Hidden Variable Bivariate Fractal Interpolation Surfaces

Fractals ◽  
2003 ◽  
Vol 11 (03) ◽  
pp. 277-288 ◽  
Author(s):  
A. K. B. Chand ◽  
G. P. Kapoor

We construct hidden variable bivariate fractal interpolation surfaces (FIS). The vector valued iterated function system (IFS) is constructed in ℝ4 and its projection in ℝ3 is taken. The extra degree of freedom coming from ℝ4 provides hidden variable, which is an important factor for flexibility and diversity in the interpolated surface. In the present paper, we construct an IFS that generates both self-similar and non-self-similar FIS simultaneously and show that the hidden variable fractal surface may be self-similar under certain conditions.

2019 ◽  
Vol 12 (02) ◽  
pp. 1950021 ◽  
Author(s):  
Chol-Hui Yun ◽  
Mi-Kyong Ri

In this paper, we present a construction of hidden variable bivariate fractal interpolation functions (HVBFIFs) with function vertical scaling factors and estimate errors of HVBFIFs on perturbation of the function vertical scaling factor. We construct HVBFIFs on the basis of the iterated function system (IFS) with function vertical scaling factors. The perturbation of the function vertical scaling factors in the IFS causes a change in the HVBFIF. An upper estimation of the errors between the original HVBFIF and the perturbed HVBFIF is given.


Fractals ◽  
1997 ◽  
Vol 05 (04) ◽  
pp. 625-634 ◽  
Author(s):  
Heping Xie ◽  
Hongquan Sun

In this paper, the methods of construction of a fractal surface are introduced, the principle of bivariate fractal interpolation functions is discussed. The theorem of the uniqueness of an iterated function system of bivariate fractal interpolation functions is proved. Moreover, the theorem of fractal dimension of fractal interpolated surface is derived. Based on these theorems, the fractal interpolated surfaces are created by using practical data.


Fractals ◽  
2019 ◽  
Vol 27 (07) ◽  
pp. 1950113
Author(s):  
CHOL-HUI YUN

In this paper, we introduce a construction of hidden variable recurrent fractal interpolation functions (HVRFIFs) with four function contractivity factors. The HVRFIF is a hidden variable fractal interpolation function (HVFIF) constructed using a recurrent iterated function system (RIFS). In the fractal interpolation theory, it is very important to ensure flexibility and diversity of the construction of interpolation functions. RIFSs produce fractal sets with local self-similarity structure. Therefore, the RIFS can describe the irregular and complicated objects in nature better than the iterated function system (IFS). The HVFIF is neither self-similar nor self-affine one. Hence, the HVFIF is more complicated, diverse and irregular than the fractal interpolation function (FIF). The contractivity factors of IFS are very important one that determines characteristics of FIFs. The IFS and RIFS with function contractivity factors can describe the fractal objects in nature better than one with constant contractivity factors. To ensure higher flexibility and diversity of the construction of the FIFs, we present constructions of one variable HVRFIFs and bivariable HVRFIFs using RIFS with four function contractivity factors.


2018 ◽  
Vol 167 (01) ◽  
pp. 193-207 ◽  
Author(s):  
ÁBEL FARKAS

AbstractWe show that for the attractor (K1, . . ., Kq) of a graph directed iterated function system, for each 1 ⩽ j ⩽ q and ϵ > 0 there exists a self-similar set K ⊆ Kj that satisfies the strong separation condition and dimHKj − ϵ < dimHK. We show that we can further assume convenient conditions on the orthogonal parts and similarity ratios of the defining similarities of K. Using this property as a ‘black box’ we obtain results on a range of topics including on dimensions of projections, intersections, distance sets and sums and products of sets.


2018 ◽  
Vol 40 (1) ◽  
pp. 221-232
Author(s):  
SABRINA KOMBRINK ◽  
STEFFEN WINTER

We show that any non-trivial self-similar subset of the real line that is invariant under a lattice iterated function system (IFS) satisfying the open set condition (OSC) is not Minkowski measurable. So far, this has only been known for special classes of such sets. Thus, we provide the last puzzle-piece in proving that under the OSC a non-trivial self-similar subset of the real line is Minkowski measurable if and only if it is invariant under a non-lattice IFS, a 25-year-old conjecture.


Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950051 ◽  
Author(s):  
KAN JIANG ◽  
XIAOMIN REN ◽  
JIALI ZHU ◽  
LI TIAN

Let [Formula: see text] be the attractor of the following iterated function system (IFS) [Formula: see text] where [Formula: see text] and [Formula: see text] is the convex hull of [Formula: see text]. The main results of this paper are as follows: [Formula: see text] if and only if [Formula: see text] where [Formula: see text]. If [Formula: see text], then [Formula: see text]As a consequence, we prove that the following conditions are equivalent:(1) For any [Formula: see text], there are some [Formula: see text] such that [Formula: see text].(2) For any [Formula: see text], there are some [Formula: see text] such that [Formula: see text](3) [Formula: see text].


2009 ◽  
Vol 23 (03) ◽  
pp. 513-516 ◽  
Author(s):  
HAO ZHU ◽  
KEMING CHENG

In this article, we investigate the energy cascade of three-dimensional turbulent flows, in which the break-up process of eddy is quasi-self-similar. Mathematically this kind of turbulence with quasi-self-similar structure eddies can be regarded as cookie-cutter system, and can be generated by self-similar iterated function system (IFS) with added nonlinear disturbance. Using Bowen's result, we can calculate the exponent of dissipative correlated function, dissipated velocity, energy spectrum supported on cookie-cutter system. The present results show that the β-model is feasible for this kind of quasi-self-similar turbulence.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 666 ◽  
Author(s):  
Peter Massopust

We introduce the novel concept of a non-stationary iterated function system by considering a countable sequence of distinct set-valued maps { F k } k ∈ N where each F k maps H ( X ) → H ( X ) and arises from an iterated function system. Employing the recently-developed theory of non-stationary versions of fixed points and the concept of forward and backward trajectories, we present new classes of fractal functions exhibiting different local and global behavior and extend fractal interpolation to this new, more flexible setting.


Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 445-469
Author(s):  
Qi-Rong Deng ◽  
Yong-Hua Yao

Abstract For any iterated function system (IFS) on R 2 , let K be the attractor. Consider the group of all isometries on K. If K is a self-similar or self-affine set, it is proven that the group must be finite. If K is a bi-Lipschitz IFS fractal, the necessary and sufficient conditions for the infiniteness (or finiteness) of the group are given. For the finite case, the computation of the size of the group is also discussed.


Sign in / Sign up

Export Citation Format

Share Document