DIFFERENT ANESTHESIA IN RAT INDUCES DISTINCT INTER-STRUCTURE BRAIN DYNAMIC DETECTED BY HIGUCHI FRACTAL DIMENSION

Fractals ◽  
2011 ◽  
Vol 19 (01) ◽  
pp. 113-123 ◽  
Author(s):  
SLADJANA SPASIC ◽  
SRDJAN KESIC ◽  
ALEKSANDAR KALAUZI ◽  
JASNA SAPONJIC

The complexity, entropy and other non-linear measures of the electroencephalogram (EEG), such as Higuchi fractal dimension (FD), have been recently proposed as the measures of anesthesia depth and sedation. We hypothesized that during unconciousness in rats induced by the general anesthetics with opposite mechanism of action, behaviorally and poligraphically controlled as appropriately achieved stable anesthesia, we can detect distinct inter-structure brain dynamic using mean FDs. We used the surrogate data test for nonlinearity in order to establish the existence of nonlinear dynamics, and to justify the use of FD as a nonlinear measure in the time series analysis. The surrogate data of predefined probability distribution and autocorrelation properties have been generated using the algorithm of statically transformed autoregressive process (STAP). FD then is applied to quantify EEG signal complexity at the cortical, hippocampal and pontine level during stable general anesthesia (ketamine/xylazine or nembutal anesthesia). Our study showed for the first time that global neuronal inhibition caused by different mechanisms of anesthetic action induced distinct brain inter-structure complexity gradient in Sprague Dawley rats. EEG signal complexities were higher at cortical and hippocampal level in ketamine/xylazine vs. nembutal anesthesia, with the dominance of hippocampal complexity. In nembutal anesthesia the complexity dominance moved to pontine level, and ponto-hippocampo-cortical decreasing complexity gradient was established. This study has proved the Higuchi fractal dimension as a valuable tool for measuring the anesthesia induced inter-structure EEG complexity.

Fractals ◽  
2018 ◽  
Vol 26 (04) ◽  
pp. 1850051 ◽  
Author(s):  
HAMIDREZA NAMAZI ◽  
SAJAD JAFARI

It is known that aging affects neuroplasticity. On the other hand, neuroplasticity can be studied by analyzing the electroencephalogram (EEG) signal. An important challenge in brain research is to study the variations of neuroplasticity during aging for patients suffering from epilepsy. This study investigates the variations of the complexity of EEG signal during aging for patients with epilepsy. For this purpose, we employed fractal dimension as an indicator of process complexity. We classified the subjects in different age groups and computed the fractal dimension of their EEG signals. Our investigations showed that as patients get older, their EEG signal will be more complex. The method of investigation that has been used in this study can be further employed to study the variations of EEG signal in case of other brain disorders during aging.


2020 ◽  
Vol 19 (03) ◽  
pp. 2050025 ◽  
Author(s):  
Shahul Mujib Kamal ◽  
Sue Sim ◽  
Rui Tee ◽  
Visvamba Nathan ◽  
Hamidreza Namazi

Legs are the contact point of humans during walking. In fact, leg muscles react when we walk in different conditions (such as different speeds and paths). In this research, we analyze how walking path affects leg muscles’ reaction. In fact, we investigate how the complexity of muscle reaction is related to the complexity of path of movement. For this purpose, we employ fractal theory. In the experiment, subjects walk on different paths that have different fractal dimensions and then we calculate the fractal dimension of Electromyography (EMG) signals obtained from both legs. The result of our analysis showed that the complexity of EMG signal increases with the increment of complexity of path of movement. The conducted statistical analysis also supported the result of analysis. The method of analysis used in this research can be further applied to find the relation between complexity of path of movement and other physiological signals of humans such as respiration and Electroencephalography (EEG) signal.


Fractals ◽  
2018 ◽  
Vol 26 (05) ◽  
pp. 1850069 ◽  
Author(s):  
MOHAMMAD ALI AHMADI-PAJOUH ◽  
TIRDAD SEIFI ALA ◽  
FATEMEH ZAMANIAN ◽  
HAMIDREZA NAMAZI ◽  
SAJAD JAFARI

Analysis of human behavior is one of the major research topics in neuroscience. It is known that human behavior is related to his brain activity. In this way, the analysis of human brain activity is the root for analysis of his behavior. Electroencephalography (EEG) as one of the most famous methods for measuring brain activity generates a chaotic signal, which has fractal characteristic. This study reveals the relation between the fractal structure (complexity) of human EEG signal and the applied visual stimuli. For this purpose, we chose two types of visual stimuli, namely, living and non-living visual stimuli. We demonstrate that the fractal structure of human EEG signal changes significantly between living versus non-living visual stimuli. The capability observed in this research can be applied to other kinds of stimuli in order to classify the brain response based on the types of stimuli.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1322 ◽  
Author(s):  
Yanqueleth Molina-Tenorio ◽  
Alfonso Prieto-Guerrero ◽  
Rafael Aguilar-Gonzalez

In this work, two novel methodologies for the multiband spectrum sensing in cognitive radios are implemented. Methods are based on the continuous wavelet transform (CWT) and the multiresolution analysis (MRA) to detect the edges of available holes in the considered wideband spectrum. Besides, MRA is also combined with the Higuchi fractal dimension (a non-linear measure) to establish the decision rule permitting the detection of the absence or presence of one or multiple primary users in the studied wideband spectrum. Methods were tested on simulated and real signals showing a good performance. The results present these two methods as effective options for detecting primary user activity on the multiband spectrum. The first methodology works for 95% of cases, while the second one presents 98% of effectivity under simulated signals of signal-to-noise ratios (SNR) higher than 0 dB.


Author(s):  
Alessandro Santuz ◽  
Turgay Akay

AbstractTime-dependent physiological data, such as electromyogram (EMG) recordings from multiple muscles, is often difficult to interpret objectively. Here, we used EMG data gathered during mouse locomotion to investigate the effects of calculation parameters and data quality on two metrics for fractal analysis: the Higuchi’s fractal dimension (HFD) and the Hurst exponent (H). A curve is fractal if it repeats itself at every scale or, in other words, if its shape remains unchanged when zooming in the curve at every zoom level. Many linear and nonlinear analysis methods are available, each of them aiming at the explanation of different data features. In recent years, fractal analysis has become a powerful nonlinear tool to extract information from physiological data not visible to the naked eye. It can present, however, some dangerous pitfalls that can lead to misleading interpretations. To calculate the HFD and the H, we have extracted muscle synergies from normal and mechanically perturbed treadmill locomotion from the hindlimb of adult mice. Then, we used one set per condition (normal and perturbed walking) of the obtained time-dependent coefficients to create surrogate data with different fluctuations over the original mean signal. Our analysis shows that HFD and H are exceptionally sensitive to the presence or absence of perturbations to locomotion. However, both metrics suffer from variations in their value depending on the parameters used for calculations and the presence of quasi-periodic elements in the time series. We discuss those issues giving some simple suggestions to reduce the chance of misinterpreting the outcomes.New & NoteworthyDespite the lack of consensus on how to perform fractal analysis of physiological time series, many studies rely on this technique. Here, we shed light on the potential pitfalls of using the Higuchi’s fractal dimension and the Hurst exponent. We expose and suggest how to solve the drawbacks of such methods when applied to data from normal and perturbed locomotion by combining in vivo recordings and computational approaches.


Sign in / Sign up

Export Citation Format

Share Document