NANOSCALE PORE SIZE DISTRIBUTION EFFECTS ON GAS PRODUCTION FROM FRACTAL SHALE ROCKS

Fractals ◽  
2019 ◽  
Vol 27 (08) ◽  
pp. 1950142
Author(s):  
JINZE XU ◽  
KELIU WU ◽  
RAN LI ◽  
ZANDONG LI ◽  
JING LI ◽  
...  

Effect of nanoscale pore size distribution (PSD) on shale gas production is one of the challenges to be addressed by the industry. An improved approach to study multi-scale real gas transport in fractal shale rocks is proposed to bridge nanoscale PSD and gas filed production. This approach is well validated with field tests. Results indicate the gas production is underestimated without considering a nanoscale PSD. A PSD with a larger fractal dimension in pore size and variance yields a higher fraction of large pores; this leads to a better gas transport capacity; this is owing to a higher free gas transport ratio. A PSD with a smaller fractal dimension yields a lower cumulative gas production; this is because a smaller fractal dimension results in the reduction of gas transport efficiency. With an increase in the fractal dimension in pore size and variance, an apparent permeability-shifting effect is less obvious, and the sensitivity of this effect to a nanoscale PSD is also impaired. Higher fractal dimensions and variances result in higher cumulative gas production and a lower sensitivity of gas production to a nanoscale PSD, which is due to a better gas transport efficiency. The shale apparent permeability-shifting effect to nanoscale is more sensitive to a nanoscale PSD under a higher initial reservoir pressure, which makes gas production more sensitive to a nanoscale PSD. The findings of this study can help to better understand the influence of a nanoscale PSD on gas flow capacity and gas production.

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shouceng Tian ◽  
Wenxi Ren ◽  
Gensheng Li ◽  
Ruiyue Yang ◽  
Tianyu Wang

Apparent permeability is an important input parameter in the simulation of shale gas production. Most apparent permeability models assume a single pore size. In this study, we develop a theoretical model for quantifying the effect of pore size distribution on shale apparent permeability. The model accounts for the nonuniform distribution of pore sizes, the rarefaction effect, and gas characteristics. The model is validated against available experimental data. Theoretical calculations show that the larger the pore radius, the larger the apparent permeability. Moreover, the apparent permeability increases with an increase in the width of pore size distribution, with this effect being much more pronounced at low pressure than at high pressure.


2021 ◽  
Author(s):  
Abinash Bal ◽  
Santanu Misra ◽  
Manab Mukherjee

<p>We investigated the nanopore structures of shale samples obtained from Cambay and Krishna-Godavari (KG) basins in India using low-pressure N<sub>2</sub> sorption method. The samples occurred at variable depths (1403-2574m and 2599-2987m for Cambay and KG basins, respectively) and have wide ranges of clay contents (56-90%) both in volume and mineralogy. The results of this study indicate the specific surface area (SSA) and pore diameters of the samples share a non-linear negative correlation. The SSA is a strong function of the clay content over the samples’ depth. The specific micropore volumes of the KG basin have relatively higher (8.29-24.4%) than the Cambay basin (0.1-3.6%), which leads to higher SSA in the KG basin. From different statistical thickness equations, the Harkins Jura equation was found to be most suitable for the computation of BJH pore size distribution and t-plot inversion in shale. Shale samples from Cambay basin show unimodal pore size distribution, with a modal diameter of 4-5nm, while in the KG basin, show bi-modal to multimodal pore size distribution, mostly ranges from 3-12 nm. In the fractal FHH method, fractal exponent D<sub>f</sub>-3 provides a better realistic result than fractal dimensions calculated from (D<sub>f</sub>-3)/3. In our samples, pore surface fractal dimension (D<sub>f1</sub>) show a positive correlation with SSA and a negative correlation with pore diameter, and pore structure fractal dimension (D<sub>f2</sub>) shows a negative correlation both with clay(%) and depth. The experimental data obtained in this study are instrumental in developing the pore-network model to assess the hydrocarbon reserve and recovery in shale.</p>


2012 ◽  
Vol 122 ◽  
pp. 42-51 ◽  
Author(s):  
F.E. Berisso ◽  
P. Schjønning ◽  
T. Keller ◽  
M. Lamandé ◽  
A. Etana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document