The Chaotic Attractor of the Sediment Movement

Fractals ◽  
1998 ◽  
Vol 06 (02) ◽  
pp. 191-196
Author(s):  
Fengsu Chen ◽  
Kongxian Xue ◽  
Wenkang Cai

We consider the chaotic behavior of the sediment movement with the observed data of the Yangtze River in China and the method of the reconstructed phase space and we find that in the sediment movement there is an attractor. As far as the real example mentioned in this paper is concerned, the correlation dimension and the largest Lyapunov exponent are around 6.6 and 0.013 respectively. These results are crucially referential for estimating the mode of the sediment movement, designing the scheme of the sediment observation, and studying the predictability problem of the sediment.

1994 ◽  
Vol 263 ◽  
pp. 93-132 ◽  
Author(s):  
George Broze ◽  
Fazle Hussain

Conclusive experimental evidence is presented for the existence of a low-dimensional temporal dynamical system in an open flow, namely the near field of an axisymmetric, subsonic free jet. An initially laminar jet (4 cm air jet in the Reynolds number range 1.1 × 104 [Lt ] ReD × 9.1 × 104) with a top-hat profile was studied using single-frequency, longitudinal, bulk excitation. Two non-dimensional control parameters – forcing frequency StD (≡fexD/Ue, where fez is the excitation frequency, D is the jet exit diameter and Ue is the exit velocity) and forcing amplitude af (≡ u’f/Ue, where u’f is the jet exit r.m.s. longitudinal velocity fluctuation at the excitation frequency) – were varied over the ranges 10-4 < af < 0.3 and 0.3 < StD < 3.0 in order to construct a phase diagram. Periodic and chaotic states were found over large domains of the parameter space. The periodic attractors correspond to stable pairing (SP) and stable double pairing (SDP) of rolled-up vortices. One chaotic attractor, near SP in the parameter space, results from nearly periodic modulations of pairing (NPMP) of vortices. At large scales (i.e. approximately the size of the attractor) in phase space, NPMP exhibits approximately quasi-periodic behaviour, including modulation sidebands around ½fex in u-spectra, large closed loops in its Poincaré sections, correlation dimension v ∼ 2 and largest Lyapunov exponent λ1 ∼ 0. But investigations at smaller scales (i.e. distances greater than, but of the order of, trajectory separation) in phase space reveal chaos, as shown by v > 2 and λ1 > 0. The other chaotic attractor, near SDP, results from nearly periodic modulations of the first vortex pairing but chaotic modulations of the second pairing and has a broadband spectrum, a dimension 2.5 [Lt ] v [Lt ] 3 and the largest Lyapunov exponent 0.2 [Lt ] λ1 [Lt ] 0.7 bits per orbit (depending on measurement locations in physical and parameter spaces).A definition that distinguishes between physically and dynamically open flows is proposed and justified by our experimental results. The most important conclusion of this study is that a physically open flow, even one that is apparently dynamically open due to convective instability, can exhibit dynamically closed behaviour as a result of feedback. A conceptual model for transitional jets is proposed based on twodimensional instabilities, subharmonic resonance and feedback from downstream vortical structures to the nozzle lip. Feedback was quantified and shown to affect the exit fundamental–subharmonic phase difference ϕ – a crucial variable in subharmonic resonance and, hence, vortex pairing. The effect of feedback, the sensitivity of pairings to ϕ, the phase diagram, and the documented periodic and chaotic attractors demonstrate the validity of the proposed conceptual model.


2019 ◽  
Vol 24 (2) ◽  
pp. 50 ◽  
Author(s):  
Rodrigo Simile Baroni ◽  
Ricardo Egydio de Carvalho ◽  
Bruno Castaldi ◽  
Bruno Furlanetto

Billiards exhibit rich dynamical behavior, typical of Hamiltonian systems. In the present study, we investigate the classical dynamics of particles in the eccentric annular billiard, which has a mixed phase space, in the limit that the scatterer is point-like. We call this configuration the near singular, in which a single initial condition (IC) densely fills the phase space with straight lines. To characterize the orbits, two techniques were applied: (i) Finite-time Lyapunov exponent (FTLE) and (ii) time recurrence. The largest Lyapunov exponent λ was calculated using the FTLE method, which for conservative systems, λ > 0 indicates chaotic behavior and λ = 0 indicates regularity. The recurrence of orbits in the phase space was investigated through recurrence plots. Chaotic orbits show many different return times and, according to Slater’s theorem, quasi-periodic orbits have at most three different return times, the bigger one being the sum of the other two. We show that during the transition to the near singular limit, a typical orbit in the billiard exhibits a sharp drop in the value of λ, suggesting some change in the dynamical behavior of the system. Many different recurrence times are observed in the near singular limit, also indicating that the orbit is chaotic. The patterns in the recurrence plot reveal that this chaotic orbit is composed of quasi-periodic segments. We also conclude that reducing the magnitude of the nonlinear part of the system did not prevent chaotic behavior.


2004 ◽  
Vol 18 (17n19) ◽  
pp. 2730-2733 ◽  
Author(s):  
YAN-SHI XIE ◽  
GUANG-HAO CHEN ◽  
KAI-XUAN TAN

A new powerful tool, chaotic theory, has been used to study mineralization through chaotic analysis for space series of gold grade in this paper. Both of the most important chaotic measures, Largest Lyapunov exponent (LLE) and fractal dimensional, for space series of gold grade in one gold deposit are computed. The positive LLE suggests that the space series of gold grade are chaotic series. When the phase space dimension approach 8~10, a chaotic attractor appears and their fractal dimension values vary from 1.94 to 3.99. It indicates that the evolution of ore-forming fluid and the enrichment and deposition of gold element are chaotic dynamic process.


2008 ◽  
Vol 18 (12) ◽  
pp. 3679-3687 ◽  
Author(s):  
AYDIN A. CECEN ◽  
CAHIT ERKAL

We present a critical remark on the pitfalls of calculating the correlation dimension and the largest Lyapunov exponent from time series data when trend and periodicity exist. We consider a special case where a time series Zi can be expressed as the sum of two subsystems so that Zi = Xi + Yi and at least one of the subsystems is deterministic. We show that if the trend and periodicity are not properly removed, correlation dimension and Lyapunov exponent estimations yield misleading results, which can severely compromise the results of diagnostic tests and model identification. We also establish an analytic relationship between the largest Lyapunov exponents of the subsystems and that of the whole system. In addition, the impact of a periodic parameter perturbation on the Lyapunov exponent for the logistic map and the Lorenz system is discussed.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1341
Author(s):  
Xiefu Zhang ◽  
Zean Tian ◽  
Jian Li ◽  
Xianming Wu ◽  
Zhongwei Cui

This paper reports a hidden chaotic system without equilibrium point. The proposed system is studied by the software of MATLAB R2018 through several numerical methods, including Largest Lyapunov exponent, bifurcation diagram, phase diagram, Poincaré map, time-domain waveform, attractive basin and Spectral Entropy. Seven types of attractors are found through altering the system parameters and some interesting characteristics such as coexistence attractors, controllability of chaotic attractor, hyperchaotic behavior and transition behavior are observed. Particularly, the Spectral Entropy algorithm is used to analyze the system and based on the normalized values of Spectral Entropy, the state of the studied system can be identified. Furthermore, the system has been implemented physically to verify the realizability.


2013 ◽  
Vol 380-384 ◽  
pp. 3742-3745
Author(s):  
Chun Yan Nie ◽  
Rui Li ◽  
Wan Li Zhang

The mechanism of logging signals generating was researched. In the same time, correlation dimension, largest Lyapunov exponent and approximate entropy of chaotic characteristics were extracted. On this basis, chaotic characteristic parameters were applied in processing, analysis and interpretation, try to find chaotic characteristics of different of reservoirs for example oil, water layer and the dry layer. The results showed that chaos characteristics in different reservoir is different, therefore, we can distinguish the different natures of reservoirs by extracting chaos characteristics.


1994 ◽  
Vol 73 (5) ◽  
pp. 660-663 ◽  
Author(s):  
A. Komori ◽  
T. Baba ◽  
T. Morisaki ◽  
M. Kono ◽  
H. Iguchi ◽  
...  

2003 ◽  
Vol 17 (22n24) ◽  
pp. 4321-4326
Author(s):  
Xiao-Ping Qin ◽  
Zheng-Mao Sheng

The chaotic movement of physical pendulum, which is driven by an anharmonic periodic force, is studied by experiment and simulation. The correlation dimension and the largest Lyapunov exponent is obtained by numerical simulation.It is found that there is an obvious difference of correlation dimensions between the systems driven by anharmonic periodic force and harmonic periodic force.


Sign in / Sign up

Export Citation Format

Share Document