NUMERICAL TECHNIQUES FOR MODELING DOPPLER ULTRASOUND SPECTRA SYSTEMS

2001 ◽  
Vol 09 (03) ◽  
pp. 805-814 ◽  
Author(s):  
M. GRAÇA RUANO

Evaluation of blood-flow Doppler ultrasound spectral content is currently performed on clinical diagnosis. Since mean frequency and bandwidth spectral parameters are determinants on the quantification of stenotic degree, more precise estimators than the conventional Fourier transform should be seek. This paper summarizes studies led by the author in this field, as well as the strategies used to implement the methods in real-time. Regarding stationary and nonstationary characteristics of the blood-flow signal, different models were assessed. When autoregressive and autoregressive moving average models were compared with the traditional Fourier based methods in terms of their statistical performance while estimating both spectral parameters, the Modified Covariance model was identified by the cost/benefit criterion as the estimator presenting better performance. The performance of three time-frequency distributions and the Short Time Fourier Transform was also compared. The Choi–Williams distribution proved to be more accurate than the other methods. The identified spectral estimators were developed and optimized using high performance techniques. Homogeneous and heterogeneous architectures supporting multiple instruction multiple data parallel processing were essayed. Results obtained proved that real-time implementation of the blood-flow estimators is feasible, enhancing the usage of more complex spectral models on other ultrasonic systems.

2019 ◽  
Vol 9 (18) ◽  
pp. 3642
Author(s):  
Lin Liang ◽  
Haobin Wen ◽  
Fei Liu ◽  
Guang Li ◽  
Maolin Li

The incipient damages of mechanical equipment excite weak impulse vibration, which is hidden, almost unobservable, in the collected signal, making fault detection and failure prevention at the inchoate stage rather challenging. Traditional feature extraction techniques, such as bandpass filtering and time-frequency analysis, are suitable for matrix processing but challenged by the higher-order data. To tackle these problems, a novel method of impulse feature extraction for vibration signals, based on sparse non-negative tensor factorization is presented in this paper. Primarily, the phase space reconstruction and the short time Fourier transform are successively employed to convert the original signal into time-frequency distributions, which are further arranged into a three-way tensor to obtain a time-frequency multi-aspect array. The tensor is decomposed by sparse non-negative tensor factorization via hierarchical alternating least squares algorithm, after which the latent components are reconstructed from the factors by the inverse short time Fourier transform and eventually help extract the impulse feature through envelope analysis. For performance verification, the experimental analysis on the bearing datasets and the swashplate piston pump has confirmed the effectiveness of the proposed method. Comparisons to the traditional methods, including maximum correlated kurtosis deconvolution, singular value decomposition, and maximum spectrum kurtosis, also suggest its better performance of feature extraction.


2011 ◽  
Vol 214 ◽  
pp. 122-127 ◽  
Author(s):  
Li Hua Wang ◽  
Qi Dong Zhang ◽  
Yong Hong Zhang ◽  
Kai Zhang

The short-time Fourier transform has the disadvantage that is does not localize time and frequency phenomena very well. Instead the time-frequency information is scattered which depends on the length of the window. It is not possible to have arbitrarily good time resolution simultaneously with good frequency resolution. In this paper, a new method that uses the short-time Fourier transform based on multi-window functions to enhance time-frequency resolution of signals has been proposed. Simulation and experimental results present the high performance of the proposed method.


1982 ◽  
pp. 529-538 ◽  
Author(s):  
James W. Arenson ◽  
Richard S. C. Cobbold ◽  
K. Wayne Johnston

2001 ◽  
Vol 40 (Part 1, No. 5B) ◽  
pp. 3882-3887 ◽  
Author(s):  
Yasuaki Noguchi ◽  
Eiichi Kashiwagi ◽  
Kohtaro Watanabe ◽  
Fujihiko Matsumoto ◽  
Suguru Sugimoto

Sign in / Sign up

Export Citation Format

Share Document