MCDM AGGREGATION MODEL USING SITUATIONAL ME-OWA AND ME-OWGA OPERATORS

Author(s):  
CHING-HSUE CHENG ◽  
JING-RONG CHANG

OWA (Ordered Weighted Averaging) aggregation operators have been extensively adopted to handle MCDM (multiple criteria decision making) problems. However, additive or multiplicative preferences should be aggregated with feasible operators. To resolve this problem, this study proposes a new MCDM aggregation model, capable of handling situational group MCDM problems based on the ME-OWA (maximal entropy ordered weighted averaging) and ME-OWGA (maximal entropy ordered weighted geometric averaging) operators. The proposed model is also applied not only to evaluate the service quality of airlines but also select the most appropriate desalination technology. The results of previous MCDM methods can be covered with proposed model.

2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Muhammad Akram ◽  
Naveed Yaqoob ◽  
Ghous Ali ◽  
Wathek Chammam

An m-polar fuzzy set is a powerful mathematical model to analyze multipolar, multiattribute, and multi-index data. The m-polar fuzzy sets have appeared as a useful tool to portray uncertainty in multiattribute decision making. The purpose of this article is to analyze the aggregation operators under the m-polar fuzzy environment with the help of Dombi norm operations. In this article, we develop some averaging and geometric aggregation operators using Dombi t-norm and t-conorm to handle uncertainty in m-polar fuzzy (mF, henceforth) information, which are mF Dombi weighted averaging (mFDWA) operator, mF Dombi ordered weighted averaging (mFDOWA) operator, mF Dombi hybrid averaging (mFDHA) operator, mF Dombi weighted geometric (mFDWG) operator, mF Dombi weighted ordered geometric operator, and mF Dombi hybrid geometric (mFDHG) operator. We investigate properties, namely, idempotency, monotonicity, and boundedness, for the proposed operators. Moreover, we give an algorithm to solve multicriteria decision-making issues which involve mF information with mFDWA and mFDWG operators. To prove the validity and feasibility of the proposed model, we solve two numerical examples with our proposed models and give comparison with mF-ELECTRE-I approach (Akram et al. 2019) and mF Hamacher aggregation operators (Waseem et al. 2019). Finally, we check the effectiveness of the developed operators by a validity test.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 180 ◽  
Author(s):  
Aliya Fahmi ◽  
Fazli Amin ◽  
Madad Khan ◽  
Florentin Smarandache

In this paper, a new concept of the triangular neutrosophic cubic fuzzy numbers (TNCFNs), their score and accuracy functions are introduced. Based on TNCFNs, some new Einstein aggregation operators, such as the triangular neutrosophic cubic fuzzy Einstein weighted averaging (TNCFEWA), triangular neutrosophic cubic fuzzy Einstein ordered weighted averaging (TNCFEOWA) and triangular neutrosophic cubic fuzzy Einstein hybrid weighted averaging (TNCFEHWA) operators are developed. Furthermore, their application to multiple-attribute decision-making with triangular neutrosophic cubic fuzzy (TNCF) information is discussed. Finally, a practical example is given to verify the developed approach and to demonstrate its practicality and effectiveness.


2014 ◽  
Vol 2014 ◽  
pp. 1-25 ◽  
Author(s):  
Liang-Guo Li ◽  
Ding-Hong Peng

We investigate the multiple criteria decision making (MCDM) problem concerns on the selection of shale gas areas with interval-valued hesitant fuzzy information. First, some Hamacher operations of interval-valued hesitant fuzzy information are introduced, which generalize and extend the existing ones. Then some interval-valued hesitant fuzzy Hamacher weighted aggregation operators, especially, the interval-valued hesitant fuzzy Hamacher synergetic weighted averaging (IVHFHSWA) operators and their geometric version (IVHFHSWG) operators that weight simultaneously the argument variables themselves and their position orders and thus generalize the ideas of the weighted averaging and the ordered weighted averaging, are proposed. The distinct advantages of these operators are that they can provide more choices for the decision makers and considerably enhance or deteriorate the performance of aggregation. The essential properties of these operators are studied and their specific cases are discussed. Based on the IVHFHSWA operator, we propose a practical approach to shale gas areas selection with interval-valued hesitant fuzzy information. Finally, an illustrative example for selecting the shale gas areas is used to demonstrate the practicality and effectiveness of the proposed approach and a comparative analysis is performed with other approaches to highlight the distinctive advantages of the proposed operators.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 658 ◽  
Author(s):  
Aliya Fahmi ◽  
Fazli Amin ◽  
Florentin Smarandache ◽  
Madad Khan ◽  
Nasruddin Hassan

In this paper, triangular cubic hesitant fuzzy Einstein weighted averaging (TCHFEWA) operator, triangular cubic hesitant fuzzy Einstein ordered weighted averaging (TCHFEOWA) operator and triangular cubic hesitant fuzzy Einstein hybrid weighted averaging (TCHFEHWA) operator are proposed. An approach to multiple attribute group decision making with linguistic information is developed based on the TCHFEWA and the TCHFEHWA operators. Furthermore, we establish various properties of these operators and derive the relationship between the proposed operators and the existing aggregation operators. Finally, a numerical example is provided to demonstrate the application of the established approach.


2020 ◽  
Vol 295 (2) ◽  
pp. 605-631
Author(s):  
LeSheng Jin ◽  
Radko Mesiar ◽  
Martin Kalina ◽  
Ronald R. Yager

2021 ◽  
Vol 40 (1) ◽  
pp. 1107-1128
Author(s):  
Peide Liu ◽  
Muhammad Akram ◽  
Ayesha Bashir

This article puts forward an innovative notion of complex picture fuzzy set (CPFS) which is particularly an extension and a generalization of picture fuzzy sets (PFSs) by the addition of phase term in the description of PFSs. The uniqueness of CPFS lies in the capability to manage the uncertainty and periodicity, simultaneously, due to the presence of phase term which broadens the range of CPFS from a real plane to the complex plane of unit disk. We describe and verify the fundamental operations and properties of CPFSs. We introduce the aggregation operators, namely; complex picture fuzzy power averaging and complex picture fuzzy power geometric operators in CPFSs environment, based on weighted and ordered weighted averaging and geometric operators. We construct multi-criteria decision making (MCDM) problem, using these operators and describe a numerical example to illustrate the validity and competence of this article. Finally, we discuss the advantages of this generalized concept of aggregation technique and analyze a comparative study to demonstrate the superiority and consistency of our model.


Sign in / Sign up

Export Citation Format

Share Document