FORMATION OF FUZZY IF-THEN RULES AND MEMBERSHIP FUNCTION USING ENHANCED PARTICLE SWARM OPTIMIZATION
This paper proposes an Enhanced Particle Swarm Optimization (EPSO) for extracting optimal rule set and tuning membership function for fuzzy logic based classifier model. The standard PSO is more sensitive to premature convergence due to lack of diversity in the swarm and can easily get trapped into local minima when it is used for data classification. To overcome this issue, BLX-α crossover and Non-uniform mutation from Genetic Algorithm (GA) are incorporated in addition to standard velocity and position updating of PSO. The performance of the proposed approach is evaluated using ten publicly available bench mark data sets. From the simulation study, it is found that the proposed approach enhances the convergence and generates a comprehensible fuzzy classifier system with high classification accuracy for all the data sets. Statistical analysis of the test result shows the suitability of the proposed method over other approaches reported in the literature.