Mamdani and Takagi-Sugeno fuzzy classifier accuracy improvement using enhanced particle swarm optimization

2014 ◽  
Vol 26 (5) ◽  
pp. 2445-2457 ◽  
Author(s):  
Hassan M. Elragal

Author(s):  
P. GANESHKUMAR ◽  
C. RANI ◽  
S. N. DEEPA

This paper proposes an Enhanced Particle Swarm Optimization (EPSO) for extracting optimal rule set and tuning membership function for fuzzy logic based classifier model. The standard PSO is more sensitive to premature convergence due to lack of diversity in the swarm and can easily get trapped into local minima when it is used for data classification. To overcome this issue, BLX-α crossover and Non-uniform mutation from Genetic Algorithm (GA) are incorporated in addition to standard velocity and position updating of PSO. The performance of the proposed approach is evaluated using ten publicly available bench mark data sets. From the simulation study, it is found that the proposed approach enhances the convergence and generates a comprehensible fuzzy classifier system with high classification accuracy for all the data sets. Statistical analysis of the test result shows the suitability of the proposed method over other approaches reported in the literature.



Author(s):  
Kai Yit Kok ◽  
Parvathy Rajendran

This paper presents an enhanced particle swarm optimization (PSO) for the path planning of unmanned aerial vehicles (UAVs). An evolutionary algorithm such as PSO is costly because every application requires different parameter settings to maximize the performance of the analyzed parameters. People generally use the trial-and-error method or refer to the recommended setting from general problems. The former is time consuming, while the latter is usually not the optimum setting for various specific applications. Hence, this study focuses on analyzing the impact of input parameters on the PSO performance in UAV path planning using various complex terrain maps with adequate repetitions to solve the tuning issue. Results show that inertial weight parameter is insignificant, and a 1.4 acceleration coefficient is optimum for UAV path planning. In addition, the population size between 40 and 60 seems to be the optimum setting based on the case studies.







Sign in / Sign up

Export Citation Format

Share Document