scholarly journals Knowledge Reduction Based on Divide and Conquer Method in Rough Set Theory

2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Feng Hu ◽  
Guoyin Wang

The divide and conquer method is a typical granular computing method using multiple levels of abstraction and granulations. So far, although some achievements based on divided and conquer method in the rough set theory have been acquired, the systematic methods for knowledge reduction based on divide and conquer method are still absent. In this paper, the knowledge reduction approaches based on divide and conquer method, under equivalence relation and under tolerance relation, are presented, respectively. After that, a systematic approach, named as the abstract process for knowledge reduction based on divide and conquer method in rough set theory, is proposed. Based on the presented approach, two algorithms for knowledge reduction, including an algorithm for attribute reduction and an algorithm for attribute value reduction, are presented. Some experimental evaluations are done to test the methods on uci data sets and KDDCUP99 data sets. The experimental results illustrate that the proposed approaches are efficient to process large data sets with good recognition rate, compared with KNN, SVM, C4.5, Naive Bayes, and CART.


Author(s):  
Qing-Hua Zhang ◽  
Long-Yang Yao ◽  
Guan-Sheng Zhang ◽  
Yu-Ke Xin

In this paper, a new incremental knowledge acquisition method is proposed based on rough set theory, decision tree and granular computing. In order to effectively process dynamic data, describing the data by rough set theory, computing equivalence classes and calculating positive region with hash algorithm are analyzed respectively at first. Then, attribute reduction, value reduction and the extraction of rule set by hash algorithm are completed efficiently. Finally, for each new additional data, the incremental knowledge acquisition method is proposed and used to update the original rules. Both algorithm analysis and experiments show that for processing the dynamic information systems, compared with the traditional algorithms and the incremental knowledge acquisition algorithms based on granular computing, the time complexity of the proposed algorithm is lower due to the efficiency of hash algorithm and also this algorithm is more effective when it is used to deal with the huge data sets.



2014 ◽  
Vol 644-650 ◽  
pp. 2120-2123 ◽  
Author(s):  
De Zhi An ◽  
Guang Li Wu ◽  
Jun Lu

At present there are many data mining methods. This paper studies the application of rough set method in data mining, mainly on the application of attribute reduction algorithm based on rough set in the data mining rules extraction stage. Rough set in data mining is often used for reduction of knowledge, and thus for the rule extraction. Attribute reduction is one of the core research contents of rough set theory. In this paper, the traditional attribute reduction algorithm based on rough sets is studied and improved, and for large data sets of data mining, a new attribute reduction algorithm is proposed.



Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 155 ◽  
Author(s):  
Lin Sun ◽  
Xiaoyu Zhang ◽  
Jiucheng Xu ◽  
Shiguang Zhang

Attribute reduction as an important preprocessing step for data mining, and has become a hot research topic in rough set theory. Neighborhood rough set theory can overcome the shortcoming that classical rough set theory may lose some useful information in the process of discretization for continuous-valued data sets. In this paper, to improve the classification performance of complex data, a novel attribute reduction method using neighborhood entropy measures, combining algebra view with information view, in neighborhood rough sets is proposed, which has the ability of dealing with continuous data whilst maintaining the classification information of original attributes. First, to efficiently analyze the uncertainty of knowledge in neighborhood rough sets, by combining neighborhood approximate precision with neighborhood entropy, a new average neighborhood entropy, based on the strong complementarity between the algebra definition of attribute significance and the definition of information view, is presented. Then, a concept of decision neighborhood entropy is investigated for handling the uncertainty and noisiness of neighborhood decision systems, which integrates the credibility degree with the coverage degree of neighborhood decision systems to fully reflect the decision ability of attributes. Moreover, some of their properties are derived and the relationships among these measures are established, which helps to understand the essence of knowledge content and the uncertainty of neighborhood decision systems. Finally, a heuristic attribute reduction algorithm is proposed to improve the classification performance of complex data sets. The experimental results under an instance and several public data sets demonstrate that the proposed method is very effective for selecting the most relevant attributes with great classification performance.



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hua Li ◽  
Deyu Li ◽  
Yanhui Zhai ◽  
Suge Wang ◽  
Jing Zhang

Owing to the high dimensionality of multilabel data, feature selection in multilabel learning will be necessary in order to reduce the redundant features and improve the performance of multilabel classification. Rough set theory, as a valid mathematical tool for data analysis, has been widely applied to feature selection (also called attribute reduction). In this study, we propose a variable precision attribute reduct for multilabel data based on rough set theory, calledδ-confidence reduct, which can correctly capture the uncertainty implied among labels. Furthermore, judgement theory and discernibility matrix associated withδ-confidence reduct are also introduced, from which we can obtain the approach to knowledge reduction in multilabel decision tables.



Author(s):  
Jingjing Song ◽  
Huili Dou ◽  
Xiansheng Rao ◽  
Xiaojing Luo ◽  
Xuan Yan

As a feature selection technique in rough set theory, attribute reduction has been extensively explored from various viewpoints especially the aspect of granularity, and multi-granularity attribute reduction has attracted much attention. Nevertheless, it should be pointed out that multiple granularities require to be considered simultaneously to evaluate the significance of candidate attribute in the corresponding process of computing reduct, which may result in high elapsed time of searching reduct. To alleviate such a problem, an acceleration strategy for neighborhood based multi-granularity attribute reduction is proposed in this paper, which aims to improve the computational efficiency of searching reduct. Our proposed approach is actually realized through the positive approximation mechanism, and the processes of searching qualified attributes are executed through evaluating candidate attributes over the gradually reduced sample space rather than all samples. The experimental results over 12 UCI data sets demonstrate that the acceleration strategy can provide superior performance to the naive approach of deriving multi-granularity reduct in the elapsed time of computing reduct without generating different reducts.



2011 ◽  
Vol 219-220 ◽  
pp. 604-607 ◽  
Author(s):  
Xu Yang Wang

Formal concept analysis and rough set theory provide two different methods for data analysis and knowledge processing. Knowledge reduct in this paper combines the two models. For an initial data sets described by formal context, look for absolute necessary attribute sets by applying rough set theory. The sets can image the concepts and hiberarchy structure completely. Then calculate the value cores of attributes values for all objects and delete redundant attributes. At last, delete repeated instances and get the minimum formal context. Construct the concept lattice of the minimum formal context can diminish the size of concept lattice of the initial table at a certain extent.



Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Deguang Li ◽  
Zhanyou Cui

Parallel processing as a method to improve computer performance has become a development trend. Based on rough set theory and divide-and-conquer idea of knowledge reduction, this paper proposes a classification method that supports parallel attribute reduction processing, the method makes the relative positive domain which needs to be calculated repeatedly independent, and the independent relative positive domain calculation could be processed in parallel; thus, attribute reduction could be handled in parallel based on this classification method. Finally, the proposed algorithm and the traditional algorithm are analyzed and compared by experiments, and the results show that the proposed method in this paper has more advantages in time efficiency, which proves that the method could improve the processing efficiency of attribute reduction and makes it more suitable for massive data sets.





Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jianchuan Bai ◽  
Kewen Xia ◽  
Yongliang Lin ◽  
Panpan Wu

As an important processing step for rough set theory, attribute reduction aims at eliminating data redundancy and drawing useful information. Covering rough set, as a generalization of classical rough set theory, has attracted wide attention on both theory and application. By using the covering rough set, the process of continuous attribute discretization can be avoided. Firstly, this paper focuses on consistent covering rough set and reviews some basic concepts in consistent covering rough set theory. Then, we establish the model of attribute reduction and elaborate the steps of attribute reduction based on consistent covering rough set. Finally, we apply the studied method to actual lagging data. It can be proved that our method is feasible and the reduction results are recognized by Least Squares Support Vector Machine (LS-SVM) and Relevance Vector Machine (RVM). Furthermore, the recognition results are consistent with the actual test results of a gas well, which verifies the effectiveness and efficiency of the presented method.



2013 ◽  
Vol 347-350 ◽  
pp. 3119-3122
Author(s):  
Yan Xue Dong ◽  
Fu Hai Huang

The basic theory of rough set is given and a method for texture classification is proposed. According to the GCLM theory, texture feature is extracted and generate 32 feature vectors to form a decision table, find a minimum set of rules for classification after attribute discretization and knowledge reduction, experimental results show that using rough set theory in texture classification, accompanied by appropriate discrete method and reduction algorithm can get better classification results



Sign in / Sign up

Export Citation Format

Share Document