The Poisson Nadarajah–Haghighi Distribution: Properties and Applications to Lifetime Data

Author(s):  
Muhammad Mansoor ◽  
M. H. Tahir ◽  
Aymaan Alzaatreh ◽  
Gauss M. Cordeiro

A new three-parameter compounded extended-exponential distribution “Poisson Nadarajah–Haghighi” is introduced and studied, which is quite flexible and can be used effectively in modeling survival data. It can have increasing, decreasing, upside-down bathtub and bathtub-shaped failure rate. A comprehensive account of the mathematical properties of the model is presented. We discuss maximum likelihood estimation for complete and censored data. The suitability of the maximum likelihood method to estimate its parameters is assessed by a Monte Carlo simulation study. Four empirical illustrations of the new model are presented to real data and the results are quite satisfactory.

2018 ◽  
Vol 55 (4) ◽  
pp. 498-522
Author(s):  
Morad Alizadeh ◽  
Mahdi Rasekhi ◽  
Haitham M. Yousof ◽  
Thiago G. Ramires ◽  
G. G. Hamedani

In this article, a new four-parameter model is introduced which can be used in mod- eling survival data and fatigue life studies. Its failure rate function can be increasing, decreasing, upside down and bathtub-shaped depending on its parameters. We derive explicit expressions for some of its statistical and mathematical quantities. Some useful characterizations are presented. Maximum likelihood method is used to estimate the model parameters. The censored maximum likelihood estimation is presented in the general case of the multi-censored data. We demonstrate empirically the importance and exibility of the new model in modeling a real data set.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


2017 ◽  
Vol 32 (1) ◽  
Author(s):  
Mustafa Ç. Korkmaz ◽  
Haitham M. Yousof

AbstractIn this article, an exponential model with only one shape parameter, which can be used in modeling survival data, reliability problems and fatigue life studies, is studied. We derive explicit expressions for some of its statistical and mathematical quantities including the ordinary moments, generating function, incomplete moments, order statistics, moment of residual life and reversed residual life. The model parameter is estimated by using the maximum likelihood method. A real data application is given to illustrate the flexibility of the model. We assess the performance of the maximum likelihood estimators in terms of biases and mean squared errors by means of a simulation study.


2020 ◽  
Vol 8 (4) ◽  
pp. 972-993
Author(s):  
Hanaa Elgohari ◽  
Haitham Yousof

This paper introduces a new flexible four-parameter lifetime model. Various of its structural properties are derived. The new density is expressed as a linear mixture of well-known exponentiated Weibull density. The maximum likelihood method is used to estimate the model parameters. Graphical simulation results to assess the performance of the maximum likelihood estimation are performed. We proved empirically the importance and flexibility of the new model in modeling four various types of data.


2018 ◽  
Vol 41 (1) ◽  
pp. 109-135 ◽  
Author(s):  
Filippo Domma ◽  
Abbas Eftekharian ◽  
Ahmed Afify ◽  
Morad Alizadeh ◽  
Indranil Ghosh

This paper introduces a new four-parameter lifetime model called the odd log-logistic Dagum distribution. The new model has the advantage of being capable of modeling various shapes of aging and failure criteria. We derive some structural properties of the model odd log-logistic Dagum such as order statistics and incomplete moments. The maximum likelihood method is used to estimate the model parameters. Simulation results to assess the performance of the maximum likelihood estimation are discussed. We prove empirically the importance and flexibility of the new model in modeling real data.


2019 ◽  
Vol 8 (2) ◽  
pp. 146
Author(s):  
Saeed Al-mualim

A new extension of the Poisson Inverse Weibull distribution is derived and studied in details. Number of structural mathematical properties are derived. We used the well-known maximum likelihood method for estimating the model parameters. The new model is applied for modeling some real data sets to prove its importance and flexibility empirically.


Author(s):  
Mohamed Hamed ◽  
Fahad Aldossary ◽  
Ahmed Z. Afify

In this article, we propose a new four-parameter Fréchet distribution called the odd Lomax Fréchet distribution. The new model can be expressed as a linear mixture of Fréchet densities. We provide some of its mathematical properties. The estimation of the model parameters is performed by the maximum likelihood method. We illustrate the good performance of the maximum likelihood estimates via a detailed numerical simulation study. The importance and usefulness of the proposed distribution for modeling data are illustrated using two real data applications.


Author(s):  
Fiaz Ahmad Bhatti ◽  
G. G. Hamedani ◽  
Haitham M. Yousof ◽  
Azeem Ali ◽  
Munir Ahmad

A flexible lifetime distribution with increasing, decreasing, inverted bathtub and modified bathtub hazard rate called Modified Burr XII-Inverse Weibull (MBXII-IW) is introduced and studied. The density function of MBXII-IW is exponential, left-skewed, right-skewed and symmetrical shaped.  Descriptive measures on the basis of quantiles, moments, order statistics and reliability measures are theoretically established. The MBXII-IW distribution is characterized via different techniques. Parameters of MBXII-IW distribution are estimated using maximum likelihood method. The simulation study is performed to illustrate the performance of the maximum likelihood estimates (MLEs). The potentiality of MBXII-IW distribution is demonstrated by its application to real data sets: serum-reversal times and quarterly earnings.


Author(s):  
Afida Nurul Hilma ◽  
Dian Lestari ◽  
Sindy Devila

In order to find a counting distribution that can handle the condition when the data has no zero-count. Distribution named Zero-truncated Poisson-Lindley distribution is developed. It can handle the condition when the data has no zero-count both in over-dispersion and under-dispersion. In this paper, characteristics of Zero-truncated Poisson-Lindley distribution are obtained and estimate distribution parameters using the maximum likelihood method. Then, the application of the model to real data is given.


Author(s):  
Ehab Mohamed Almetwally ◽  
Hisham Mohamed Almongy ◽  
Amaal El sayed Mubarak

In this paper we consider the estimation of the Weibull Generalized Exponential Distribution (WGED) Parameters with Progressive Censoring Schemes. In order to obtain the optimal censoring scheme for WGED, more than one method of estimation was used to reach a better scheme with the best method of estimation. The maximum likelihood method and the method of Bayesian estimation for (square error and Linex) loss function have been used. Monte carlo simulation is used for comparison between the two methods of estimation under censoring schemes. To show how the schemes work in practice; we analyze a strength data for single carbon fibers as a case of real data.


Sign in / Sign up

Export Citation Format

Share Document