Zero-truncated Poisson-Lindley distribution

Author(s):  
Afida Nurul Hilma ◽  
Dian Lestari ◽  
Sindy Devila

In order to find a counting distribution that can handle the condition when the data has no zero-count. Distribution named Zero-truncated Poisson-Lindley distribution is developed. It can handle the condition when the data has no zero-count both in over-dispersion and under-dispersion. In this paper, characteristics of Zero-truncated Poisson-Lindley distribution are obtained and estimate distribution parameters using the maximum likelihood method. Then, the application of the model to real data is given.

Author(s):  
Fiaz Ahmad Bhatti ◽  
G. G. Hamedani ◽  
Haitham M. Yousof ◽  
Azeem Ali ◽  
Munir Ahmad

A flexible lifetime distribution with increasing, decreasing, inverted bathtub and modified bathtub hazard rate called Modified Burr XII-Inverse Weibull (MBXII-IW) is introduced and studied. The density function of MBXII-IW is exponential, left-skewed, right-skewed and symmetrical shaped.  Descriptive measures on the basis of quantiles, moments, order statistics and reliability measures are theoretically established. The MBXII-IW distribution is characterized via different techniques. Parameters of MBXII-IW distribution are estimated using maximum likelihood method. The simulation study is performed to illustrate the performance of the maximum likelihood estimates (MLEs). The potentiality of MBXII-IW distribution is demonstrated by its application to real data sets: serum-reversal times and quarterly earnings.


Author(s):  
Muhammad Mansoor ◽  
M. H. Tahir ◽  
Aymaan Alzaatreh ◽  
Gauss M. Cordeiro

A new three-parameter compounded extended-exponential distribution “Poisson Nadarajah–Haghighi” is introduced and studied, which is quite flexible and can be used effectively in modeling survival data. It can have increasing, decreasing, upside-down bathtub and bathtub-shaped failure rate. A comprehensive account of the mathematical properties of the model is presented. We discuss maximum likelihood estimation for complete and censored data. The suitability of the maximum likelihood method to estimate its parameters is assessed by a Monte Carlo simulation study. Four empirical illustrations of the new model are presented to real data and the results are quite satisfactory.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


Author(s):  
Hossein Zamani ◽  
Noriszura Ismail ◽  
Marzieh Shekari

This study introduces a new discrete distribution which is a weighted version of Poisson-Lindley distribution. The weighted distribution is obtained using the negative binomial weight function and can be fitted to count data with over-dispersion. The p.m.f., p.g.f. and simulation procedure of the new weighted distribution, namely weighted negative binomial Poisson-Lindley (WNBPL), are provided. The maximum likelihood method for parameter estimation is also presented. The WNBPL distribution is fitted to several insurance datasets, and is compared to the Poisson and negative binomial distributions in terms of several statistical tests.


Author(s):  
Ehab Mohamed Almetwally ◽  
Hisham Mohamed Almongy ◽  
Amaal El sayed Mubarak

In this paper we consider the estimation of the Weibull Generalized Exponential Distribution (WGED) Parameters with Progressive Censoring Schemes. In order to obtain the optimal censoring scheme for WGED, more than one method of estimation was used to reach a better scheme with the best method of estimation. The maximum likelihood method and the method of Bayesian estimation for (square error and Linex) loss function have been used. Monte carlo simulation is used for comparison between the two methods of estimation under censoring schemes. To show how the schemes work in practice; we analyze a strength data for single carbon fibers as a case of real data.


2021 ◽  
Vol 10 (3) ◽  
pp. 8
Author(s):  
Adebisi Ade Ogunde ◽  
Gbenga Adelekan Olalude ◽  
Oyebimpe Emmanuel Adeniji ◽  
Kayode Balogun

A new generalization of the Frechet distribution called Lehmann Type II Frechet Poisson distribution is defined and studied. Various structural mathematical properties of the proposed model including ordinary moments, incomplete moments, generating functions, order statistics, Renyi entropy, stochastic ordering, Bonferroni and Lorenz curve, mean and median deviation, stress-strength parameter are investigated. The maximum likelihood method is used to estimate the model parameters. We examine the performance of the maximum likelihood method by means of a numerical simulation study. The new distribution is applied for modeling three real data sets to illustrate empirically its flexibility and tractability in modeling life time data.


2011 ◽  
Vol 110-116 ◽  
pp. 4240-4245
Author(s):  
Jun Zhao Zhang ◽  
Cong Ling Wang ◽  
Xue Fa Fang

The reliability of the pneumatic cylinder was investigated by routine life test. The results show that the failures of the pneumatic cylinder can be described as a Weibull distribution and fatigue fracture of the aluminum end cap and the head of install bolt is the major failure for the pneumatic cylinder. The pneumatic cylinder life distribution parameters were estimated by the median rank method in combination with maximum likelihood method. The distribution model for the reliability of the pneumatic cylinder was also proposed here.


2021 ◽  
pp. 0309524X2199996
Author(s):  
Rajesh Kumar ◽  
Arun Kumar

Weibull distribution is an extensively used statistical distribution for analyzing wind speed and determining energy potential studies. Estimation of the wind speed distribution parameter is essential as it significantly affects the success of Weibull distribution application to wind energy. Various estimation methods viz. graphical method, moment method (MM), maximum likelihood method (ML), modified maximum likelihood method, and energy pattern factor method or power density method have been presented in various reported research studies for accurate estimation of distribution parameters. ML is the most preferred approach to study the parameter estimation. ML works on the principle of forming a likelihood function and maximizing the function for parameter estimation. ML generally uses the numerical based iterative method, such as Newton–Raphson. However, the iterative methods proposed in the literature are generally computationally intensive. In this paper, an efficient technique utilizing differential evolution (DE) algorithm to enhance the estimation accuracy of maximum likelihood estimation has been presented. The [Formula: see text] of GA-Weibull, SA-Weibull, and DE-Weibull is 0.958, 0.953, and 0.973 respectively, and value of RMSE of DE-Weibull 0.0083, GA-Weibull (0.0104), and SA-Weibull (0.0110), for the yearly wind speed data are obtained. The lowest root mean square error and larger regression value for both monthly and yearly wind speed data indicate that the DE-Weibull distribution has the best goodness of fit and advocate the DE algorithm for the parameter estimation.


Sign in / Sign up

Export Citation Format

Share Document