scholarly journals The Odd Log-Logistic Dagum Distribution: Properties and Applications

2018 ◽  
Vol 41 (1) ◽  
pp. 109-135 ◽  
Author(s):  
Filippo Domma ◽  
Abbas Eftekharian ◽  
Ahmed Afify ◽  
Morad Alizadeh ◽  
Indranil Ghosh

This paper introduces a new four-parameter lifetime model called the odd log-logistic Dagum distribution. The new model has the advantage of being capable of modeling various shapes of aging and failure criteria. We derive some structural properties of the model odd log-logistic Dagum such as order statistics and incomplete moments. The maximum likelihood method is used to estimate the model parameters. Simulation results to assess the performance of the maximum likelihood estimation are discussed. We prove empirically the importance and flexibility of the new model in modeling real data.

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


2020 ◽  
Vol 8 (4) ◽  
pp. 972-993
Author(s):  
Hanaa Elgohari ◽  
Haitham Yousof

This paper introduces a new flexible four-parameter lifetime model. Various of its structural properties are derived. The new density is expressed as a linear mixture of well-known exponentiated Weibull density. The maximum likelihood method is used to estimate the model parameters. Graphical simulation results to assess the performance of the maximum likelihood estimation are performed. We proved empirically the importance and flexibility of the new model in modeling four various types of data.


Author(s):  
Muhammad Mansoor ◽  
M. H. Tahir ◽  
Aymaan Alzaatreh ◽  
Gauss M. Cordeiro

A new three-parameter compounded extended-exponential distribution “Poisson Nadarajah–Haghighi” is introduced and studied, which is quite flexible and can be used effectively in modeling survival data. It can have increasing, decreasing, upside-down bathtub and bathtub-shaped failure rate. A comprehensive account of the mathematical properties of the model is presented. We discuss maximum likelihood estimation for complete and censored data. The suitability of the maximum likelihood method to estimate its parameters is assessed by a Monte Carlo simulation study. Four empirical illustrations of the new model are presented to real data and the results are quite satisfactory.


2021 ◽  
Vol 10 (3) ◽  
pp. 8
Author(s):  
Adebisi Ade Ogunde ◽  
Gbenga Adelekan Olalude ◽  
Oyebimpe Emmanuel Adeniji ◽  
Kayode Balogun

A new generalization of the Frechet distribution called Lehmann Type II Frechet Poisson distribution is defined and studied. Various structural mathematical properties of the proposed model including ordinary moments, incomplete moments, generating functions, order statistics, Renyi entropy, stochastic ordering, Bonferroni and Lorenz curve, mean and median deviation, stress-strength parameter are investigated. The maximum likelihood method is used to estimate the model parameters. We examine the performance of the maximum likelihood method by means of a numerical simulation study. The new distribution is applied for modeling three real data sets to illustrate empirically its flexibility and tractability in modeling life time data.


2017 ◽  
Vol 6 (3) ◽  
pp. 24 ◽  
Author(s):  
Gauss M. Cordeiro ◽  
Thiago A. N. De Andrade ◽  
Marcelo Bourguignon ◽  
Frank Gomes-Silva

We study a new two-parameter lifetime model called the exponentiated generalized standardized half-logistic distribution, which extends the half-logistic pioneered by Balakrishnan in the eighties. We provide explicit expressions for the moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves, and order statistics. The model parameters are estimated by the maximum likelihood method. A simulation study reveals that the estimators have desirable properties such as small biases and variances even in moderate sample sizes. We prove empirically that the new distribution provides a better fit to a real data set than other competitive models.


2020 ◽  
Vol 4 (2) ◽  
pp. 327-340
Author(s):  
Ahmed Ali Hurairah ◽  
Saeed A. Hassen

In this paper, we introduce a new family of continuous distributions called the beta transmuted Dagum distribution which extends the beta and transmuted familys. The genesis of the beta distribution and transmuted map is used to develop the so-called beta transmuted Dagum (BTD) distribution. The hazard function, moments, moment generating function, quantiles and stress-strength of the beta transmuted Dagum distribution (BTD) are provided and discussed in detail. The method of maximum likelihood estimation is used for estimating the model parameters. A simulation study is carried out to show the performance of the maximum likelihood estimate of parameters of the new distribution. The usefulness of the new model is illustrated through an application to a real data set.


Author(s):  
Muhammad Aslam ◽  
Zawar Hussain ◽  
Zahid Asghar

In this article, we propose a new family of distributions using the T-X family named as modified generalized Marshall-Olkin family of distributions. Comprehensive mathematical and statistical properties of this family of distributions are provided. The model parameters are estimated by maximum likelihood method. The maximum likelihood estimation under Type-II censoring is also discussed. Two lifetime data sets are used to show the suitability and applicability of the new family of distributions. For comparison purposes, different goodness of fit tests are used.  


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1462
Author(s):  
Mansour Shrahili ◽  
Naif Alotaibi

A new family of probability distributions is defined and applied for modeling symmetric real-life datasets. Some new bivariate type G families using Farlie–Gumbel–Morgenstern copula, modified Farlie–Gumbel–Morgenstern copula, Clayton copula and Renyi’s entropy copula are derived. Moreover, some of its statistical properties are presented and studied. Next, the maximum likelihood estimation method is used. A graphical assessment based on biases and mean squared errors is introduced. Based on this assessment, the maximum likelihood method performs well and can be used for estimating the model parameters. Finally, two symmetric real-life applications to illustrate the importance and flexibility of the new family are proposed. The symmetricity of the real data is proved nonparametrically using the kernel density estimation method.


2018 ◽  
Vol 7 (4) ◽  
pp. 57 ◽  
Author(s):  
Jehhan. A. Almamy ◽  
Mohamed Ibrahim ◽  
M. S. Eliwa ◽  
Saeed Al-mualim ◽  
Haitham M. Yousof

In this work, we study the two-parameter Odd Lindley Weibull lifetime model. This distribution is motivated by the wide use of the Weibull model in many applied areas and also for the fact that this new generalization provides more flexibility to analyze real data. The Odd Lindley Weibull density function can be written as a linear combination of the exponentiated Weibull densities. We derive explicit expressions for the ordinary and incomplete moments, moments of the (reversed) residual life, generating functions and order statistics. We discuss the maximum likelihood estimation of the model parameters. We assess the performance of the maximum likelihood estimators in terms of biases, variances, mean squared of errors by means of a simulation study. The usefulness of the new model is illustrated by means of two real data sets. The new model provides consistently better fits than other competitive models for these data sets. The Odd Lindley Weibull lifetime model is much better than \ Weibull, exponential Weibull, Kumaraswamy Weibull, beta Weibull, and the three parameters odd lindly Weibull with three parameters models so the Odd Lindley Weibull model is a good alternative to these models in modeling glass fibres data as well as the Odd Lindley Weibull model is much better than the Weibull, Lindley Weibull transmuted complementary Weibull geometric and beta Weibull models so it is a good alternative to these models in modeling time-to-failure data.


2021 ◽  
Vol 9 (4) ◽  
pp. 942-962
Author(s):  
Mohamed Abo Raya

This work introduces a new one-parameter compound G family. Relevant statistical properties are derived. The new density can be “asymmetric right skewed with one peak and a heavy tail”, “symmetric” and “left skewedwith one peak”. The new hazard function can be “upside-down”, “upside-down-constant”, “increasing”, “decreasing” and “decreasing-constant”. Many bivariate types have been also derived via different common copulas. The estimation of the model parameters is performed by maximum likelihood method. The usefulness and flexibility of the new family is illustrated by means of two real data sets.


Sign in / Sign up

Export Citation Format

Share Document