Embedded Atom Method Study of Pd Thin Films on Cu(001)

1998 ◽  
Vol 05 (05) ◽  
pp. 959-963 ◽  
Author(s):  
A. Bilić ◽  
Y. G. Shen ◽  
B. V. King ◽  
D. J. O'Connor

We have studied the structures formed by the deposition of 0.5 and 1 monolayer (ML) of Pd on a Cu(001) surface using Monte Carlo (MC) simulations and static optimizations. The energetics are given by the semiempirical embedded atom method (EAM). At 0.5 ML Pd coverage we find that a Pd–Cu c (2×2) single layer surface alloy is created, consistent with experimental observations. At 1 ML Pd coverage a double layer c (2×2) Cu–Pd surface alloy is found to be energetically favored over structures with a clock-reconstructed topmost layer. However, metastable configurations of the top layer consisting of a clock-rotated phase with the (2×2) p4g symmetry coexisting with phases with c (2×2) and p (2×2) symmetries can also be obtained, in agreement with the experimental results.

1990 ◽  
Vol 205 ◽  
Author(s):  
P. Bacher ◽  
P. Wynblatt

AbstractMonte Carlo simulation, in conjunction with the embedded atom method, has been used to model the composition and structure of a semicoherent (001) interphase boundary separating coexisting Cu-rich and Ag-rich phases in a binary Cu-Ag alloy. The results are compared with earlier simulations of the same boundary in a Cu-Ag-Au alloy, in which Au was found to segregate to the interface, and the boundary was found to be unstable with respect to break-up into {111} facets. The boundary in the binary system is also unstable to faceting, but displays both {100} as well as {111} facets. It is concluded that Au segregation in the ternary alloy plays an important role in stabilizing the {111} facets. The interplay between the misfit dislocations present at the interface, and the compositional features of the boundary are also discussed.


1992 ◽  
Vol 278 ◽  
Author(s):  
J.E. Angelo ◽  
W.W. Gerberich ◽  
N.R. Moody ◽  
S.M. Foiles

AbstractIn this study, the Embedded Atom Method is combined with Monte Carlo and molecular dynamics simulations to study the fracture properties of Σ9 and Σ11 tilt boundaries in nickel. The Monte Carlo simulations are used to simulate the exposure of the bicrystal to a hydrogen environment at 300° C. These simulations establish the equilibrium distribution of hydrogen at the boundaries as a function of far-field concentration. The effect of the hydrogen on the fracture process is then studied with molecular dynamics. It will be shown that the fracture stress of the Σ9 boundary is affected over a wider range of far-field concentrations than the Σ11 boundary, although the Σ11 boundary shows that catastrophic failure occurs when the sample is charged beyond a certain far-field concentration.


2007 ◽  
Vol 14 (03) ◽  
pp. 411-417 ◽  
Author(s):  
YU CHEN ◽  
SHUZHI LIAO

The surface concentrations and concentration depth profiles to the (110) surface of an Au 75 Pd 25 alloy is studied by modified analytical embedded atom method (MAEAM) with the Monte Carlo simulations. The results indicate that Au enriched in the two topmost layers, but depleted in the third layer. The Au concentration in the non-reconstructed surface is less than that in the reconstructed surface. Au concentration in third layer of reconstructed surface, which is more agreement with experimental data in present simulations, is about 63% 61% and 55%, at 800K, 600K and 400K respectively. Thus the present simulations are helpful for a better understanding of surface segregation of AuPd alloys.


2005 ◽  
Vol 887 ◽  
Author(s):  
Hong Zhu ◽  
Masanori Okada ◽  
Hidetaka Nakashima ◽  
Ajay K. Sarkar ◽  
Hirofumi Yamasaki ◽  
...  

ABSTRACTDouble Layer Processes of LBMO/YBCO and Crystalline Degradations Oxide microwave devices will be widely expected in mobile communication system in the near future in the world. Superconducting YBa2Cu3Ox (YBCO) thin films are most advisable for microwave filter devices due to their very low surface resistance. Next generation devices are tunable microwave filters formed by double layers consisting of YBCO and ferromagnetic manganites such as La(Ba)MnO3 (LBMO).In order to complete excellent double layers, we must first obtain proper techniques to fabricate perfect a/c-phases of YBCO and excellent crystalline LBMO single layers on substrate at low substrate temperatures (Ts), and then fabricate their double layers. We have tried an ion beam sputtering (IBS), then now we can control the perfect a-c orientation growths of YBCO. The minimum surface roughness is 1 nm for the c-phase and 0.3 nm for the a-phase.Excellent crystalline thin films of LBMO can be grown by IBS with controlling Ts, oxygen pressure (Po) and oxygen molecular or plasma supply on MgO and LAO substrates. It can be grown down to 480 deg C. The minimum rocking half-width is 0.01 deg, and the minimum surface roughness is 0.8 nm. As-grown LBMO film shows different metal-insulator transition and Curier temperatures. The results are interpreted by a phase separation and magnetostriction.The double layers of YBCO on LBMO and LBMO on YBCO were fabricated by IBS. In YBCO/LBMO, the excellent a/c-YBCO can be grown on the underlying LBMO at 600-650 °C. The crystallinity of overlying YBCO is nearly the same with that of the single layers on MgO and LAO. The mosaicity of YBCO is much better than that of the single layers on MgO and LAO. It is noticed that the underlying LBMO crystallinity can be improved, and the mosaicity is not degraded after the double layer deposition. A n inferiority is that the double layer surface is much degraded. Then we should fabricate the smooth underlying LBMO. In LBMO/YBCO, the excellent crystalline LBMO can be grown on the underlying a/c-YBCO at 650-700 deg C. The better crystalline LBMO grows on the better crystalline YBCO. The LBMO/a-YBCO clearly shows XRD peak separations while the LBMO/c-YBCO shows peak overlappings. The crystallinity of overlying LBMO is slightly poorer that that of the single layers on LAO. The mosaicity of LBMO is much poorer than that of the single layers of LBMO on LAO, but is almost the same with that of the underlying YBCO. It should be noticed that the crystallinity of underlying YBCO is degraded considerably after the double layer deposition. Then we should deposite the overlying LBMO at low temperatures. However a superiority is that the double layer surface is not degraded or rather improved. Now we are estimating time-dependence of the crystalline degradations on the single and double layers. YBCO crystallinity is easily degraded with time but LBMO is very stable. Then LBMO/YBCO is advisable in terms of a long term degradation.


2002 ◽  
Vol 517 (1-3) ◽  
pp. 177-185 ◽  
Author(s):  
Huiqiu Deng ◽  
Wangyu Hu ◽  
Xiaolin Shu ◽  
Lihua Zhao ◽  
Bangwei Zhang

1997 ◽  
Vol 492 ◽  
Author(s):  
R. Ravelo ◽  
J. Aguilar ◽  
M. I. Baskes

ABSTRACTUsing Molecular Dynamics, the evolution dynamics of Sn on the (111) and (100) surfaces of Cu have been investigated as a function of coverage and temperature. The interaction potentials are described by modified embedded atom method (MEAM) potentials. The calculated diffusion activation energies of Cu in Sn and Sn in Cu agree reasonably well with experimental values. We find that the structure of the overlayer depends on the morphology of the substrate and remains stable up to temperatures of the order of 70% of the melting temperature of the substrate at which diffusion of Sn into the substrate and Cu atoms onto the overlayer is observed.


2014 ◽  
Vol 121 ◽  
pp. 407-414 ◽  
Author(s):  
Tanyakarn Treeratanaphitak ◽  
Mark D. Pritzker ◽  
Nasser Mohieddin Abukhdeir

Sign in / Sign up

Export Citation Format

Share Document