Effects of Hydrogen on the Fracture Properties of Σ9 and Σ11 Tilt Boundaries in Nickel

1992 ◽  
Vol 278 ◽  
Author(s):  
J.E. Angelo ◽  
W.W. Gerberich ◽  
N.R. Moody ◽  
S.M. Foiles

AbstractIn this study, the Embedded Atom Method is combined with Monte Carlo and molecular dynamics simulations to study the fracture properties of Σ9 and Σ11 tilt boundaries in nickel. The Monte Carlo simulations are used to simulate the exposure of the bicrystal to a hydrogen environment at 300° C. These simulations establish the equilibrium distribution of hydrogen at the boundaries as a function of far-field concentration. The effect of the hydrogen on the fracture process is then studied with molecular dynamics. It will be shown that the fracture stress of the Σ9 boundary is affected over a wider range of far-field concentrations than the Σ11 boundary, although the Σ11 boundary shows that catastrophic failure occurs when the sample is charged beyond a certain far-field concentration.

1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


1991 ◽  
Vol 238 ◽  
Author(s):  
N. R. Moody ◽  
S. M. Foiles

ABSTRACTIn this study, molecular dynamics simulations were used to fracture Σ9 tilt boundaries in nickel lattices containing a range of trap site hydrogen concentrations. These lattices were created in a previous study using Monte Carlo simulations and the Embedded Atom Method to duplicate room temperature exposure to a hydrogen environment. The molecular dynamics simulations were run at absolute zero to immobilize the hydrogen distributions for determination of trap site occupancy effects on grain boundary fracture. In all lattices, fracture began by the breaking of bonds next to polyhedral defect sites that characterize the boundary structure followed by rapid failure of the remaining bonds. The effect of hydrogen was to lower the stress for fracture from 18 GPa to a lower limiting value of 8 GPa as the trap sites along the boundary plane filled. The simulations showed that the atoms at these sites were the only atoms involved in the fracture process. Within the constraints imposed on these calculations, the results of this study showed that the ‘inherent’ effect of hydrogen in the absence of plastic deformation is to reduce the cohesive force between atoms across the boundary.


2018 ◽  
Vol 32 (11) ◽  
pp. 1850133
Author(s):  
J. H. Xia ◽  
Xue-Mei Gao

In this work, the segregation and structural transitions of CoNi clusters, between 1500 and 300 K, have been investigated using molecular dynamics simulations with the embedded atom method potential. The radial distribution function was used to analyze the segregation during the cooling processes. It is found that Co atoms segregate to the inside and Ni atoms preferably to the surface during the cooling processes, the Co[Formula: see text]Ni[Formula: see text] cluster becomes a core–shell structure. We discuss the structural transition according to the pair-correction function and pair-analysis technique, and finally the liquid Co[Formula: see text]Ni[Formula: see text] crystallizes into the coexistence of hcp and fcc structure at 300 K. At the same time, it is found that the frozen structure of CoNi cluster is strongly related to the Co concentration.


2017 ◽  
Vol 2 (2) ◽  
pp. 183 ◽  
Author(s):  
Rinaldo Marimpul

Copper film growth using thermal evaporation methods was studied using molecular dynamics simulations. The AlSiMgCuFe modified embedded atom method potential was used to describe interaction of Cu-Cu, Si-Si and Cu-Si atoms. Our results showed that the variations of substrate temperature affected crystal structure composition and surface roughness of the produced copper film catalyst substrate. In this study, we observed intermixing phenomenon after deposition process. The increasing of substrate temperature affected the increasing of the total silicon atoms had diffusion into copper film.


2011 ◽  
Vol 675-677 ◽  
pp. 1011-1014
Author(s):  
Rui Fang Ding ◽  
Xue Min Pan ◽  
Guang Ling Wei

The self-diffusion coefficient of Cu in Sn-1.5wt.%Cu and Sn-2wt.%Cu lead-free solders was investigated using molecular dynamics simulations based on a modified embedded-atom method from 503 K to 773 K. Then the viscosity of the solders was calculated using the selfdiffusion coefficient values, and the results were in good agreement with the experimental data. Two segments, a low-temperature zone and a high-temperature zone, were found on both η–T and lnη–1/T plots, where η is the viscosity and T is the absolute temperature. Through analysis, we infer that the viscosity mutation was attributed to the remarkable structure transition.


1989 ◽  
Vol 157 ◽  
Author(s):  
Michael J. Sabochick ◽  
Nghi Q. Lam

ABSTRACTRadiation-induced amorphization of the crystalline compound CuTi was investigated by molecular-dynamics simulations using new interatomic potentials derived from the embedded-atom method. Two different approaches to amorphization were tried: one in which Cu and Ti atoms were randomly exchanged, and another in which Frenkel pairs were introduced at random. The potential energy, volume expansion and pair-correlation function were calculated as functions of chemical disorder and atomic displacements. The results indicate that, although both chemical disordering and point-defect introduction increase the system energy and volume, the presence of Frenkel pairs is essential to trigger the crystalline-to-amorphous transition.


1988 ◽  
Vol 133 ◽  
Author(s):  
P. C. Clapp ◽  
M. J. Rubins ◽  
S. Charpenay ◽  
J. A. Rifkin ◽  
Z. Z. Yu ◽  
...  

ABSTRACTCalculations of the surface free energy and anti-phase boundary energy as a function of low index orientations and temperature have been determined for equiatomic perfectly ordered bcc NiAl via molecular dynamics computer simulations. The simulations utilized an Embedded Atom Method calculation of the interatomic potentials and volume forces in the Ni-As alloy system. Values of about 0.95, 1.6, 1.9 and 2.0 J/m2 were found for surface energies of the {100}, {110}, {112} and {111} orientations:, respectively. APB energies of about 0.24 and 0.38 J/m2 were determined for {110} and {112} boundaries, respectively. In addition, we have examined the phase stability and relative energies of the ordered bcc, fcc and bct phases at low temperature, and find a bct phase with c/a = 1.32 slightly lower in energy than the bcc, presaging the martensitic transformation that occurs at finite temperatures in more nickel rich alloys.


2013 ◽  
Vol 1514 ◽  
pp. 37-42 ◽  
Author(s):  
Prithwish K. Nandi ◽  
Jacob Eapen

ABSTRACTMolecular dynamics simulations are performed to investigate the defect accumulation and microstructure evolution in hcp zirconium (Zr) – a material which is widely used as clad for nuclear fuel. Cascades are generated with a 3 keV primary knock-on atom (PKA) using an embedded atom method (EAM) potential with interactions modified for distances shorter than 0.1 Å. With sequential cascade simulations we show the emergence of stacking faults both in the basal and prism planes, and a Shockley partial dislocation on the basal plane.


Sign in / Sign up

Export Citation Format

Share Document