Evolution equation for interaction of opposite directed waves with arbitrary polarization in 1D-metamaterial

Author(s):  
Dmitrii Ampilogov ◽  
Sergey Leble

In this paper, a theoretical study of wave propagation in 1D metamaterial is presented. A system of evolution equations for electromagnetic waves with both polarizations account is derived by means of projection operators method for general nonlinearity and dispersion. It describes interaction of opposite directed waves with a given polarization. The particular case of Kerr nonlinearity and Drude dispersion is considered. In such approximation, it results in the corresponding system of nonlinear equations that generalizes the Schäfer–Wayne one. Traveling wave solution for the system of equation of interaction of orthogonal-polarized waves is also obtained. Dependence of wavelength on amplitude is written and plotted.

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Md. Abdus Salam

We construct the traveling wave solutions involving parameters of modified Liouville equation by using a new approach, namely the modified simple equation method. The proposed method is direct, concise, and elementary and can be used for many other nonlinear evolution equations.


2014 ◽  
Vol 63 (13) ◽  
pp. 130201
Author(s):  
Shi Lan-Fang ◽  
Zhu Min ◽  
Zhou Xian-Chun ◽  
Wang Wei-Gang ◽  
Mo Jia-Qi

2015 ◽  
Vol 11 (3) ◽  
pp. 3134-3138 ◽  
Author(s):  
Mostafa Khater ◽  
Mahmoud A.E. Abdelrahman

In this work, an extended Jacobian elliptic function expansion method is pro-posed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the Couple Boiti-Leon-Pempinelli System which plays an important role in mathematical physics.


2020 ◽  
Vol 10 (1) ◽  
pp. 66-75
Author(s):  
Byungsoo Moon

Abstract In this paper, we study the existence of peaked traveling wave solution of the generalized μ-Novikov equation with nonlocal cubic and quadratic nonlinearities. The equation is a μ-version of a linear combination of the Novikov equation and Camassa-Hom equation. It is found that the equation admits single peaked traveling wave solutions.


1996 ◽  
Vol 54 (19) ◽  
pp. 13484-13486 ◽  
Author(s):  
David R. Rowland ◽  
Zlatko Jovanoski

2021 ◽  
pp. 2150417
Author(s):  
Kalim U. Tariq ◽  
Mostafa M. A. Khater ◽  
Muhammad Younis

In this paper, some new traveling wave solutions to the conformable time-fractional Wu–Zhang system are constructed with the help of the extended Fan sub-equation method. The conformable fractional derivative is employed to transform the fractional form of the system into ordinary differential system with an integer order. Some distinct types of figures are sketched to illustrate the physical behavior of the obtained solutions. The power and effective of the used method is shown and its ability for applying different forms of nonlinear evolution equations is also verified.


2020 ◽  
Author(s):  
Ricardo Erazo Toscano ◽  
Remus Osan

1AbstractTraveling waves of electrical activity are ubiquitous in biological neuronal networks. Traveling waves in the brain are associated with sensory processing, phase coding, and sleep. The neuron and network parameters that determine traveling waves’ evolution are synaptic space constant, synaptic conductance, membrane time constant, and synaptic decay time constant. We used an abstract neuron model to investigate the propagation characteristics of traveling wave activity. We formulated a set of evolution equations based on the network connectivity parameters. We numerically investigated the stability of the traveling wave propagation with a series of perturbations with biological relevance.


Sign in / Sign up

Export Citation Format

Share Document