HEDGING OPTIONS IN A DOUBLY MARKOV-MODULATED FINANCIAL MARKET VIA STOCHASTIC FLOWS

2019 ◽  
Vol 22 (08) ◽  
pp. 1950047 ◽  
Author(s):  
TAK KUEN SIU ◽  
ROBERT J. ELLIOTT

The hedging of a European-style contingent claim is studied in a continuous-time doubly Markov-modulated financial market, where the interest rate of a bond is modulated by an observable, continuous-time, finite-state, Markov chain and the appreciation rate of a risky share is modulated by a continuous-time, finite-state, hidden Markov chain. The first chain describes the evolution of credit ratings of the bond over time while the second chain models the evolution of the hidden state of an underlying economy over time. Stochastic flows of diffeomorphisms are used to derive some hedge quantities, or Greeks, for the claim. A mixed filter-based and regime-switching Black–Scholes partial differential equation is obtained governing the price of the claim. It will be shown that the delta hedge ratio process obtained from stochastic flows is a risk-minimizing, admissible mean-self-financing portfolio process. Both the first-order and second-order Greeks will be considered.

2005 ◽  
Vol 08 (06) ◽  
pp. 791-806 ◽  
Author(s):  
PING WU ◽  
ROBERT J. ELLIOTT

In this paper we propose a type of mean reverting model with jumps, where the mean reverting level changes according to a continuous time, finite state Markov chain. This model could be applied to the interest rate and energy markets. We apply filtering techniques and obtain finite dimensional filters for the unobservable state of the Markov chain based on observations of the mean reverting diffusion. Various auxiliary filters are developed that allow us to estimate the parameters of the Markov chain by the EM algorithm. A simulation study is done for a concrete example.


2021 ◽  
Vol 14 (5) ◽  
pp. 188
Author(s):  
Leunglung Chan ◽  
Song-Ping Zhu

This paper investigates the American option price in a two-state regime-switching model. The dynamics of underlying are driven by a Markov-modulated Geometric Wiener process. That means the interest rate, the appreciation rate, and the volatility of underlying rely on hidden states of the economy which can be interpreted in terms of Markov chains. By means of the homotopy analysis method, an explicit formula for pricing two-state regime-switching American options is presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Tak Kuen Siu

Integration-by-parts formulas for functions of fundamental jump processes relating to a continuous-time, finite-state Markov chain are derived using Bismut's change of measures approach to Malliavin calculus. New expressions for the integrands in stochastic integrals corresponding to representations of martingales for the fundamental jump processes are derived using the integration-by-parts formulas. These results are then applied to hedge contingent claims in a Markov chain financial market, which provides a practical motivation for the developments of the integration-by-parts formulas and the martingale representations.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jinzhi Li ◽  
Shixia Ma

This paper investigates the valuation of European option with credit risk in a reduced form model when the stock price is driven by the so-called Markov-modulated jump-diffusion process, in which the arrival rate of rare events and the volatility rate of stock are controlled by a continuous-time Markov chain. We also assume that the interest rate and the default intensity follow the Vasicek models whose parameters are governed by the same Markov chain. We study the pricing of European option and present numerical illustrations.


2021 ◽  
Vol 58 (2) ◽  
pp. 372-393
Author(s):  
H. M. Jansen

AbstractOur aim is to find sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure of a Markov chain. First, we study properties of the state indicator function and the state occupation measure of a Markov chain. In particular, we establish weak convergence of the state occupation measure under a scaling of the generator matrix. Then, relying on the connection between the state occupation measure and the Dynkin martingale, we provide sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure. We apply our results to derive diffusion limits for the Markov-modulated Erlang loss model and the regime-switching Cox–Ingersoll–Ross process.


1996 ◽  
Vol 33 (3) ◽  
pp. 640-653 ◽  
Author(s):  
Tobias Rydén

An aggregated Markov chain is a Markov chain for which some states cannot be distinguished from each other by the observer. In this paper we consider the identifiability problem for such processes in continuous time, i.e. the problem of determining whether two parameters induce identical laws for the observable process or not. We also study the order of a continuous-time aggregated Markov chain, which is the minimum number of states needed to represent it. In particular, we give a lower bound on the order. As a by-product, we obtain results of this kind also for Markov-modulated Poisson processes, i.e. doubly stochastic Poisson processes whose intensities are directed by continuous-time Markov chains, and phase-type distributions, which are hitting times in finite-state Markov chains.


2005 ◽  
Vol 37 (4) ◽  
pp. 1015-1034 ◽  
Author(s):  
Saul D. Jacka ◽  
Zorana Lazic ◽  
Jon Warren

Let (Xt)t≥0 be a continuous-time irreducible Markov chain on a finite state space E, let v be a map v: E→ℝ\{0}, and let (φt)t≥0 be an additive functional defined by φt=∫0tv(Xs)d s. We consider the case in which the process (φt)t≥0 is oscillating and that in which (φt)t≥0 has a negative drift. In each of these cases, we condition the process (Xt,φt)t≥0 on the event that (φt)t≥0 is nonnegative until time T and prove weak convergence of the conditioned process as T→∞.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Ruijuan Deng ◽  
Yong Ren

AbstractThe paper considers a class of multi-valued backward stochastic differential equations with subdifferential of a lower semi-continuous convex function with regime switching, whose generator is a continuous-time Markov chain with a finite state space. Firstly, we get the existence and uniqueness of the solution by the penalization method. Secondly, we prove that the solution of the original system is weakly convergent. Finally, we give an application to the homogenization of a class of multi-valued PDEs with Markov chain.


2019 ◽  
Vol 34 (2) ◽  
pp. 235-257
Author(s):  
Peter Spreij ◽  
Jaap Storm

In this paper, we study limit behavior for a Markov-modulated binomial counting process, also called a binomial counting process under regime switching. Such a process naturally appears in the context of credit risk when multiple obligors are present. Markov-modulation takes place when the failure/default rate of each individual obligor depends on an underlying Markov chain. The limit behavior under consideration occurs when the number of obligors increases unboundedly, and/or by accelerating the modulating Markov process, called rapid switching. We establish diffusion approximations, obtained by application of (semi)martingale central limit theorems. Depending on the specific circumstances, different approximations are found.


Author(s):  
W. P. Malcom ◽  
Lakhdar Aggoun ◽  
Mohamed Al-Lawati

In this paper we develop a stochastic model incorporating a double-Markov modulated mean-reversion model. Unlike a price process the basis process X can take positive or negative values. This model is based on an explicit discretisation of the corresponding continuous time dynamics. The new feature in our model is that we suppose the mean reverting level in our dynamics as well as the noise coefficient can change according to the states of some finite-state Markov processes which could be the economy and some other unseen random phenomenon.  


Sign in / Sign up

Export Citation Format

Share Document