SUITABLE EXTENDER MODELS I

2010 ◽  
Vol 10 (01n02) ◽  
pp. 101-339 ◽  
Author(s):  
W. HUGH WOODIN

We investigate both iteration hypotheses and extender models at the level of one supercompact cardinal. The HOD Conjecture is introduced and shown to be a key conjecture both for the Inner Model Program and for understanding the limits of the large cardinal hierarchy. We show that if the HOD Conjecture is true then this provides strong evidence for the existence of an ultimate version of Gödel's constructible universe L. Whether or not this "ultimate" L exists is now arguably the central issue for the Inner Model Program.

2021 ◽  
Vol 27 (2) ◽  
pp. 221-222
Author(s):  
Alejandro Poveda

AbstractThe dissertation under comment is a contribution to the area of Set Theory concerned with the interactions between the method of Forcing and the so-called Large Cardinal axioms.The dissertation is divided into two thematic blocks. In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopěnka’s Principle (Part I). In turn, Block II is devoted to the investigation of some problems arising from Singular Cardinal Combinatorics (Part II and Part III).We commence Part I by investigating the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopěnka’s Principle. As a result, we generalize Magidor’s classical theorems [2] to this higher region of the large-cardinal hierarchy. Also, our analysis allows to settle all the questions that were left open in [1]. Finally, we conclude Part I by presenting a general theory of preservation of $C^{(n)}$ -extendible cardinals under class forcing iterations. From this analysis we derive several applications. For instance, our arguments are used to show that an extendible cardinal is consistent with “ $(\lambda ^{+\omega })^{\mathrm {HOD}}<\lambda ^+$ , for every regular cardinal $\lambda $ .” In particular, if Woodin’s HOD Conjecture holds, and therefore it is provable in ZFC + “There exists an extendible cardinal” that above the first extendible cardinal every singular cardinal $\lambda $ is singular in HOD and $(\lambda ^+)^{\textrm {{HOD}}}=\lambda ^+$ , there may still be no agreement at all between V and HOD about successors of regular cardinals.In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) with other relevant combinatorial principles at the level of successors of singular cardinals. Two of these are the Tree Property and the Reflection of Stationary sets, which are central in Infinite Combinatorics.Specifically, Part II is devoted to prove the consistency of the Tree Property at both $\kappa ^+$ and $\kappa ^{++}$ , whenever $\kappa $ is a strong limit singular cardinal witnessing an arbitrary failure of the SCH. This generalizes the main result of [3] in two senses: it allows arbitrary cofinalities for $\kappa $ and arbitrary failures for the SCH.In the last part of the dissertation (Part III) we introduce the notion of $\Sigma $ -Prikry forcing. This new concept allows an abstract and uniform approach to the theory of Prikry-type forcings and encompasses several classical examples of Prikry-type forcing notions, such as the classical Prikry forcing, the Gitik-Sharon poset, or the Extender Based Prikry forcing, among many others.Our motivation in this part of the dissertation is to prove an iteration theorem at the level of the successor of a singular cardinal. Specifically, we aim for a theorem asserting that every $\kappa ^{++}$ -length iteration with support of size $\leq \kappa $ has the $\kappa ^{++}$ -cc, provided the iterates belong to a relevant class of $\kappa ^{++}$ -cc forcings. While there are a myriad of works on this vein for regular cardinals, this contrasts with the dearth of investigations in the parallel context of singular cardinals. Our main contribution is the proof that such a result is available whenever the class of forcings under consideration is the family of $\Sigma $ -Prikry forcings. Finally, and as an application, we prove that it is consistent—modulo large cardinals—the existence of a strong limit cardinal $\kappa $ with countable cofinality such that $\mathrm {SCH}_\kappa $ fails and every finite family of stationary subsets of $\kappa ^+$ reflects simultaneously.


2004 ◽  
Vol 69 (2) ◽  
pp. 371-386 ◽  
Author(s):  
William Mitchell ◽  
Ralf Schindler

Abstract.We construct, assuming that there is no inner model with a Woodin cardinal but without any large cardinal assumption, a model Kc which is iterable for set length iterations, which is universal with respect to all weasels with which it can be compared, and (assuming GCH) is universal with respect to set sized premice.


1986 ◽  
Vol 51 (3) ◽  
pp. 648-662 ◽  
Author(s):  
Moti Gitik

Namba [N] proved that the nonstationary ideal over a measurable (NSκ) cannot be κ+-saturated. Baumgartner, Taylor and Wagon [BTW] asked if it is possible for NSκ to be precipitous over a measurable κ. A model with this property was constructed by the author, and shortly after Foreman, Magidor and Shelah [FMS] proved a general theorem that after collapsing of a supercompact or even a superstrong to the successor of κ, NSκ became precipitous. This theorem implies that it is possible to have the nonstationary ideal precipitous over even a supercompact cardinal. Just start with a supercompact κ and a superstrong λ > κ. Make supercompactness of κ indistractible as in [L] and then collapse λ to be κ+.The aim of our paper is to show that the existence of a supercompact cardinal alone already implies the consistency of the nonstationary ideal precipitous over a supercompact. The proof gives also the following: if κ is a λ-supercompact for λ ≥ (2κ)+, then there exists a generic extension in which κ is λ-supercompact and NSκ is precipitous. Thus, for a model with NSκ precipitous over a measurable we need a (2κ)+-supercompact cardinal κ. Jech [J] proved that the precipitous of NSκ over a measurable κ implies the existence of an inner model with o(κ) = κ+ + 1. In §3 we improve this result a little by showing that the above assumption implies an inner model with a repeat point.The paper is organized as follows. In §1 some preliminary facts are proved. The model with NSκ precipitous over a supercompact is constructed in §2.


1981 ◽  
Vol 46 (1) ◽  
pp. 59-66
Author(s):  
A. Kanamori

This paper continues the study of κ-ultrafilters over a measurable cardinal κ, following the sequence of papers Ketonen [2], Kanamori [1] and Menas [4]. Much of the concern will be with p-point κ-ultrafilters, which have become a focus of attention because they epitomize situations of further complexity beyond the better understood cases, normal and product κ-ultrafilters.For any κ-ultrafilter D, let iD: V → MD ≃ Vκ/D be the elementary embedding of the universe into the transitization of the ultrapower by D. Situations of U < RKD will be exhibited when iU(κ) < iD(κ), and when iU(κ) = iD(κ). The main result will then be that if the latter case obtains, then there is an inner model with two measurable cardinals. (As will be pointed out, this formulation is due to Kunen, and improves on an earlier version of the author.) Incidentally, a similar conclusion will also follow from the assertion that there is an ascending Rudin-Keisler chain of κ-ultrafilters of length ω + 1. The interest in these results lies in the derivability of a substantial large cardinal assertion from plausible hypotheses on κ-ultrafilters.


1986 ◽  
Vol 51 (1) ◽  
pp. 33-38
Author(s):  
Mitchell Spector

The concept of "partition relation" has proven to be extremely important in the development of the theory of large cardinals. This is due in good part to the fact that the ordinal numbers which appear as parameters in partition relations provide a natural way to define a detailed hierarchy of the corresponding large cardinal axioms. In particular, the study of cardinals satisfying Ramsey-Erdös-style partition relations has yielded a great number of very interesting large cardinal axioms which lie in strength strictly between inaccessibility and measurability. It is the purpose of this paper to show that this phenomenon does not occur if we use infinite exponent partition relations; no such partition relation has consistency strength strictly between inaccessibility and measurability. We also give a complete determination of which infinite exponent partition relations hold, assuming that there is no inner model of set theory with a measurable cardinal.Our notation is standard. If F is a function and x is a set, then F″x denotes the range of F on x. If X is a set of ordinals and α is an ordinal, then [X]α is the collection of all subsets of X of order type α. We identify a member of [X]α with a strictly increasing function from α to X. If p ∈ [X]α and q ∈ [α]β, then the composition of p with q, which we denote pq, is a member of [X]β.


2011 ◽  
Vol 11 (01) ◽  
pp. 87-113 ◽  
Author(s):  
MENACHEM MAGIDOR ◽  
JOUKO VÄÄNÄNEN

We show that, assuming the consistency of a supercompact cardinal, the first (weakly) inaccessible cardinal can satisfy a strong form of a Löwenheim–Skolem–Tarski theorem for the equicardinality logic L(I), a logic introduced in [5] strictly between first order logic and second order logic. On the other hand we show that in the light of present day inner model technology, nothing short of a supercompact cardinal suffices for this result. In particular, we show that the Löwenheim–Skolem–Tarski theorem for the equicardinality logic at κ implies the Singular Cardinals Hypothesis above κ as well as Projective Determinacy.


2002 ◽  
Vol 67 (2) ◽  
pp. 820-840 ◽  
Author(s):  
Arthur W. Apter ◽  
Joel David Hamkins

AbstractCan a supercompact cardinal κ be Laver indestructible when there is a level-by-level agreement between strong compactness and supercompactness? In this article, we show that if there is a sufficiently large cardinal above κ, then no, it cannot. Conversely, if one weakens the requirement either by demanding less indestructibility, such as requiring only indestructibility by stratified posets. or less level-by-level agreement, such as requiring it only on measure one sets, then yes. it can.


2017 ◽  
Vol 23 (1) ◽  
pp. 1-109 ◽  
Author(s):  
W. HUGH WOODIN

AbstractWe give a fairly complete account which first shows that the solution to the inner model problem for one supercompact cardinal will yield an ultimate version ofLand then shows that the various current approaches to inner model theory must be fundamentally altered to provide that solution.


2000 ◽  
Vol 6 (2) ◽  
pp. 176-184 ◽  
Author(s):  
Ralf-Dieter Schindler

The present paper investigates the power of proper forcings to change the shape of the universe, in a certain well-defined respect. It turns out that the ranking among large cardinals can be used as a measure for that power. However, in order to establish the final result I had to isolate a new large cardinal concept, which I dubbed “remarkability.” Let us approach the exact formulation of the problem—and of its solution—at a slow pace.Breathtaking developments in the mid 1980s found one of its culminations in the theorem, due to Martin, Steel, and Woodin, that the existence of infinitely many Woodin cardinals with a measurable cardinal above them all implies that AD, the axiom of determinacy, holds in the least inner model containing all the reals, L(ℝ) (cf. [6[, p. 91). One of the nice things about AD is that the theory ZF + AD + V = L(ℝ) appears as a choiceless “completion” of ZF in that any interesting question (in particular, about sets of reals) seems to find an at least attractive answer in that theory (cf., for example, [5] Chap. 6). (Compare with ZF + V = L!) Beyond that, AD is very canonical as may be illustrated as follows.Let us say that L(ℝ) is absolute for set-sized forcings if for all posets P ∈ V, for all formulae ϕ, and for all ∈ ℝ do we have thatwhere is a name for the set of reals in the extension.


2011 ◽  
Vol 76 (4) ◽  
pp. 1441-1452 ◽  
Author(s):  
Remi Strullu

AbstractWe show that MRP + MA implies that ITP(λ,ω2) holds for all cardinal λ ≥ ω2. This generalizes a result by Weiβ who showed that PFA implies that ITP(λ, ω2) holds for all cardinal λ ≥ ω2. Consequently any of the known methods to prove MRP + MA consistent relative to some large cardinal hypothesis requires the existence of a strongly compact cardinal. Moreover if one wants to force MRP + MA with a proper forcing, it requires at least a supercompact cardinal. We also study the relationship between MRP and some weak versions of square. We show that MRP implies the failure of □(λ, ω) for all λ ≥ ω2 and we give a direct proof that MRP + MA implies the failure of □(λ, ω1) for all λ ≥ ω2.


Sign in / Sign up

Export Citation Format

Share Document