scholarly journals Perturbation theory of the quadratic Lotka–Volterra double center

Author(s):  
Jean–Pierre Françoise ◽  
Lubomir Gavrilov

We revisit the bifurcation theory of the Lotka–Volterra quadratic system [Formula: see text] with respect to arbitrary quadratic deformations. The system has a double center, which is moreover isochronous. We show that the deformed system can have at most two limit cycles on the finite plane, with possible distribution [Formula: see text], where [Formula: see text]. Our approach is based on the study of pairs of bifurcation functions associated to the centers, expressed in terms of iterated path integrals of length two.

1991 ◽  
Vol 44 (3) ◽  
pp. 511-526 ◽  
Author(s):  
Zhang Pingguang ◽  
Cai Suilin

In this paper we study the number and the relative position of the limit cycles of a plane quadratic system with a weak focus. In particular, we prove the limit cycles of such a system can never have (2, 2)-distribution, and that there is at most one limit cycle not surrounding this weak focus under any one of the following conditions:(i) the system has at least 2 saddles in the finite plane,(ii) the system has more than 2 finite singular points and more than 1 singular point at infinity,(iii) the system has exactly 2 finite singular points, more than 1 singular point at infinity, and the weak focus is itself surrounded by at least one limit cycle.


2006 ◽  
Vol 39 (26) ◽  
pp. 8231-8255 ◽  
Author(s):  
H Kleinert ◽  
A Chervyakov

Author(s):  
Адам Дамирович Ушхо

Доказывается, что система дифференциальных уравнений, правые части которой представляют собой полиномы второй степени, не имеет предельных циклов, если в ограниченной части фазовой плоскости она имеет только два состояния равновесия и при этом они являются состояниями равновесия второй группы. It is proved that a system of differential equations, the right-hand sides of which are second-order polynomials, has no limit cycles if it has only two equilibrium states in the bounded part of the phase plane, and they are the equilibrium states of the second group.


Author(s):  
Ali Atabaigi

This paper studies the dynamics of the generalist predator–prey systems modeled in [E. Alexandra, F. Lutscher and G. Seo, Bistability and limit cycles in generalist predator–prey dynamics, Ecol. Complex. 14 (2013) 48–55]. When prey reproduces much faster than predator, by combining the normal form theory of slow-fast systems, the geometric singular perturbation theory and the results near non-hyperbolic points developed by Krupa and Szmolyan [Relaxation oscillation and canard explosion, J. Differential Equations 174(2) (2001) 312–368; Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions, SIAM J. Math. Anal. 33(2) (2001) 286–314], we provide a detailed mathematical analysis to show the existence of homoclinic orbits, heteroclinic orbits and canard limit cycles and relaxation oscillations bifurcating from the singular homoclinic cycles. Moreover, on global stability of the unique positive equilibrium, we provide some new results. Numerical simulations are also carried out to support the theoretical results.


2009 ◽  
Vol 19 (12) ◽  
pp. 4117-4130 ◽  
Author(s):  
MAOAN HAN ◽  
JUNMIN YANG ◽  
PEI YU

In this paper, we consider bifurcation of limit cycles in near-Hamiltonian systems. A new method is developed to study the analytical property of the Melnikov function near the origin for such systems. Based on the new method, a computationally efficient algorithm is established to systematically compute the coefficients of Melnikov function. Moreover, we consider the case that the Hamiltonian function of the system depends on parameters, in addition to the coefficients involved in perturbations, which generates more limit cycles in the neighborhood of the origin. The results are applied to a quadratic system with cubic perturbations to show that the system can have five limit cycles in the vicinity of the origin.


2002 ◽  
Vol 10 (02) ◽  
pp. 167-182
Author(s):  
YUQUAN WANG ◽  
ZUORUI SHEN

Applying qualitative theory and Hopf bifurcation theory, we detailedly discuss the Merkin enzyme reaction system, and the sufficient conditions derived for the global stability of the unique positive equilibrium, the local stability of three equilibria and the existence of limit cycles. Meanwhile, we show that the Hopf bifurcations may occur. Using MATLAB software, we present three examples to simulate these conclusions in this paper.


2012 ◽  
Vol 22 (11) ◽  
pp. 1250272 ◽  
Author(s):  
XIANBO SUN ◽  
JUNMIN YANG

In this paper, we study the number and distribution of small limit cycles of some Z4-equivariant near-Hamiltonian system of degree 9. Using the methods of Hopf bifurcation theory, we find that this system can have 64 small limit cycles. The configuration of 64 small limit cycles of the system is also illustrated in Fig. 1. When we let some parameters be zero, then we find that there can be 40 small limit cycles in a seventh system.


2006 ◽  
Vol 16 (04) ◽  
pp. 925-943 ◽  
Author(s):  
JIBIN LI ◽  
MINGJI ZHANG ◽  
SHUMIN LI

By using the bifurcation theory of planar dynamical systems and the method of detection functions, the bifurcations of limit cycles in a Z2-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 7 are studied. An example of a special Z2-equivariant vector field having 50 limit cycles with a configuration of compound eyes are given.


2004 ◽  
Vol 14 (12) ◽  
pp. 4285-4292 ◽  
Author(s):  
MAOAN HAN ◽  
TONGHUA ZHANG ◽  
HONG ZANG

This paper concerns the number of limit cycles in a cubic system. Eleven limit cycles are found and two different distributions are given by using the methods of bifurcation theory and qualitative analysis.


2014 ◽  
Vol 24 (11) ◽  
pp. 1450144
Author(s):  
Desheng Shang ◽  
Yaoming Zhang

Bifurcations in a cubic system with a degenerate saddle point are investigated using the technique of blow-up, the method of planar perturbation theory and qualitative analysis. It has been found that after appropriate perturbations, at least 12 limit cycles can bifurcate from a degenerate saddle point in a type of cubic systems.


Sign in / Sign up

Export Citation Format

Share Document