OPTIMAL INTERCONNECTION OF AD HOC INJECTION NETWORKS

2008 ◽  
Vol 09 (03) ◽  
pp. 277-297 ◽  
Author(s):  
GREGOIRE DANOY ◽  
ENRIQUE ALBA ◽  
PASCAL BOUVRY

Multi-hop ad hoc networks allow establishing local groups of communicating devices in a self-organizing way. However, when considering realistic mobility patterns, such networks most often get divided in a set of disjoint partitions. This presence of partitions is an obstacle to communication within these networks. Ad hoc networks are generally composed of devices capable of communicating in a geographical neighborhood for free (e.g. using Wi-Fi or Bluetooth). In most cases a communication infrastructure is available. It can be a set of access point as well as a GSM/UMTS network. The use of such an infrastructure is billed, but it permits to interconnect distant nodes, through what we call “bypass links”. The objective of our work is to optimize the placement of these long-range links. To this end we rely on small-world network properties, which consist in a high clustering coefficient and a low characteristic path length. In this article we investigate the use of three genetic algorithms (generational, steady-state, and cooperative coevolutionary) to optimize three instances of this topology control problem and present initial evidence of their capacity to solve it.

2020 ◽  
Vol 9 (2) ◽  
pp. 23 ◽  
Author(s):  
Rajorshi Biswas ◽  
Jie Wu

Cognitive radio (CR) technology is envisioned to use wireless spectrum opportunistically when the primary user (PU) is not using it. In cognitive radio ad-hoc networks (CRAHNs), the mobile users form a distributed multi-hop network using the unused spectrum. The qualities of the channels are different in different locations. When a user moves from one place to another, it needs to switch the channel to maintain the quality-of-service (QoS) required by different applications. The QoS of a channel depends on the amount of usage. A user can select the channels that meet the QoS requirement during its movement. In this paper, we study the mobility patterns of users, predict their next locations and probabilities to move there based on its history. We extract the mobility patterns from each user’s location history and match the recent trajectory with the patterns to find future locations. We construct a spectrum database using Wi-Fi access point location data and the free space path loss formula. We propose a machine learning-based mechanism to predict spectrum status of some missing locations in the spectrum database. We formulate a problem to select the current channel in order to minimize the total number of channel switches during a certain number of next moves of a user. We conduct an extensive simulation combining real and synthetic datasets to support our model.


2017 ◽  
Vol 13 (06) ◽  
pp. 113 ◽  
Author(s):  
Saher Manaseer ◽  
Afnan Alawneh

<p class="0keywords"><span lang="EN-GB">Over the last decade, many researchers have focused on Mobile Ad Hoc Networks as the main communication method in disaster recovery situations. In these researches, there has been marginal focus on the mobility patterns of nodes in disaster recovery scenarios. In this paper, a deeper analysis has been performed on some of the main mobility models used in testing new protocols and a new mobility model is proposed to incorporate some neglected factors concerned with disaster recovery situations.</span></p>


2013 ◽  
Vol 756-759 ◽  
pp. 1059-1062 ◽  
Author(s):  
Xue Bing Wang

By making small adjustment to general ad hoc network architecture, we build a network topology with short average path length and high clustering coefficient, which are two important metrics of ad hoc networks. Furthermore, an efficient probabilistic flooding routing algorithm is proposed based on this network model. Simulation results show that this architecture behaves better performance than its ordinary counterpart.


Frequenz ◽  
2012 ◽  
Vol 66 (7-8) ◽  
Author(s):  
Woo-Yong Choi

AbstractAccording to the current IEEE 802.11 wireless LAN standards, IEEE 802.11 ad hoc networks have the limitation that all STAs (Stations) are in the one-hop transmission range of each other. In this paper, to alleviate the limitation of IEEE 802.11 ad hoc networks we propose the efficient method for selecting the most appropriate pseudo AP (Access Point) from among the set of ad hoc STAs and extending the service area of IEEE 802.11 ad hoc networks by the pseudo AP’s relaying the internal traffic of IEEE 802.11 ad hoc networks. Numerical examples show that the proposed method significantly extends the service area of IEEE 802.11 ad hoc networks.


Author(s):  
Martin Fleury ◽  
Nadia N Qadri ◽  
Muhammad Altaf ◽  
Mohammed Ghanbari

Mobile Ad Hoc Networks (MANETs) are a further step towards wireless networks with no or limited infrastructure and Vehicular Ad Hoc Networks (VANETs) extend this concept, introducing diverse mobility patterns but removing the need for battery power conservation. Video streaming and multimedia applications in general have become an engine of growth in wireless networking and this Chapter shows how video streaming can take place in this challenging environment. Error resilience and path diversity are presented as the key to robust streaming. The Chapter shows that simplified forms of multiple description coding are a practical route to take, with redundant frames in the temporal domain or Flexible Macroblock Ordering in the spatial domain offering preferred solutions. As a form of management of streaming, distributed sourcing via peer-to-peer streaming is experimented within VANET simulations. Error resilience methods, peer-to-peer streaming, and multi-path routing are reviewed. The Chapter considers the exploitation of path diversity over a MANET and a VANET. Path diversity allows the merging of the peer-to-peer concept with ad hoc networks. Future research directions are reviewed.


Sign in / Sign up

Export Citation Format

Share Document