HIERARCHICAL REPLICATION TECHNIQUES TO ENSURE CHECKPOINT STORAGE RELIABILITY IN GRID ENVIRONMENT

2009 ◽  
Vol 10 (04) ◽  
pp. 345-364
Author(s):  
FATIHA BOUABACHE ◽  
THOMAS HERAULT ◽  
GILLES FEDAK ◽  
FRANCK CAPPELLO

An efficient and reliable fault tolerance protocol plays a key role in High Performance Computing. Rollback recovery is the most common fault tolerance technique used in High Performance Computing and especially in MPI applications. This technique relies on the reliability of the checkpoint storage. Most of the rollback recovery protocols assume that the checkpoint servers machines are reliable. However, in a grid environment any unit can fail at any moment, including components used to connect different administrative domains. Such failures lead to the loss of a whole set of machines, including the more reliable machines used to store the checkpoints in this administrative domain. Thus it is not safe to rely on the high Mean Time Between Failures of specific machines to store the checkpoint images. This paper introduces a new coordinated checkpoint protocol, which tolerates checkpoint server failures and clusters failures, and ensures a checkpoint storage reliability in a grid environment. To provide this reliability the protocol is based on a replication process. We propose new hierarchical replication strategies that exploit the locality of checkpoint images in order to minimize inter-cluster communication. We evaluate the effectiveness of our two hierarchical replication strategies through simulations against several criteria such as topology and scalability.

Author(s):  
Camille Coti

This chapter gives an overview of techniques used to tolerate failures in high-performance distributed applications. We describe basic replication techniques, automatic rollback recovery and application-based fault tolerance. We present the challenges raised specifically by distributed, high performance computing and the performance overhead the fault tolerance mechanisms are likely to cost. Last, we give an example of a fault-tolerant algorithm that exploits specific properties of a recent algorithm.


Author(s):  
Simon McIntosh–Smith ◽  
Rob Hunt ◽  
James Price ◽  
Alex Warwick Vesztrocy

High-performance computing systems continue to increase in size in the quest for ever higher performance. The resulting increased electronic component count, coupled with the decrease in feature sizes of the silicon manufacturing processes used to build these components, may result in future exascale systems being more susceptible to soft errors caused by cosmic radiation than in current high-performance computing systems. Through the use of techniques such as hardware-based error-correcting codes and checkpoint-restart, many of these faults can be mitigated at the cost of increased hardware overhead, run-time, and energy consumption that can be as much as 10–20%. Some predictions expect these overheads to continue to grow over time. For extreme scale systems, these overheads will represent megawatts of power consumption and millions of dollars of additional hardware costs, which could potentially be avoided with more sophisticated fault-tolerance techniques. In this paper we present new software-based fault tolerance techniques that can be applied to one of the most important classes of software in high-performance computing: iterative sparse matrix solvers. Our new techniques enables us to exploit knowledge of the structure of sparse matrices in such a way as to improve the performance, energy efficiency, and fault tolerance of the overall solution.


Author(s):  
Marc Casas ◽  
Wilfried N Gansterer ◽  
Elias Wimmer

We investigate the usefulness of gossip-based reduction algorithms in a high-performance computing (HPC) context. We compare them to state-of-the-art deterministic parallel reduction algorithms in terms of fault tolerance and resilience against silent data corruption (SDC) as well as in terms of performance and scalability. New gossip-based reduction algorithms are proposed, which significantly improve the state-of-the-art in terms of resilience against SDC. Moreover, a new gossip-inspired reduction algorithm is proposed, which promises a much more competitive runtime performance in an HPC context than classical gossip-based algorithms, in particular for low accuracy requirements.


Author(s):  
ROBERT STEWART ◽  
PATRICK MAIER ◽  
PHIL TRINDER

AbstractReliability is set to become a major concern on emergent large-scale architectures. While there are many parallel languages, and indeed many parallel functional languages, very few address reliability. The notable exception is the widely emulated Erlang distributed actor model that provides explicit supervision and recovery of actors with isolated state. We investigate scalable transparent fault tolerant functional computation with automatic supervision and recovery of tasks. We do so by developing HdpH-RS, a variant of the Haskell distributed parallel Haskell (HdpH) DSL with Reliable Scheduling. Extending the distributed work stealing protocol of HdpH for task supervision and recovery is challenging. To eliminate elusive concurrency bugs, we validate the HdpH-RS work stealing protocol using the SPIN model checker. HdpH-RS differs from the actor model in that its principal entities are tasks, i.e. independent stateless computations, rather than isolated stateful actors. Thanks to statelessness, fault recovery can be performed automatically and entirely hidden in the HdpH-RS runtime system. Statelessness is also key for proving a crucial property of the semantics of HdpH-RS: fault recovery does not change the result of the program, akin to deterministic parallelism. HdpH-RS provides a simple distributed fork/join-style programming model, with minimal exposure of fault tolerance at the language level, and a library of higher level abstractions such as algorithmic skeletons. In fact, the HdpH-RS DSL is exactly the same as the HdpH DSL, hence users can opt in or out of fault tolerant execution without any refactoring. Computations in HdpH-RS are always as reliable as the root node, no matter how many nodes and cores are actually used. We benchmark HdpH-RS on conventional clusters and an High Performance Computing platform: all benchmarks survive Chaos Monkey random fault injection; the system scales well e.g. up to 1,400 cores on the High Performance Computing; reliability and recovery overheads are consistently low even at scale.


2021 ◽  
Author(s):  
Pedro Henrique Di Francia Rosso ◽  
Emilio Francesquini

The Message Passing Interface (MPI) standard is largely used in High-Performance Computing (HPC) systems. Such systems employ a large number of computing nodes. Thus, Fault Tolerance (FT) is a concern since a large number of nodes leads to more frequent failures. Two essential components of FT are Failure Detection (FD) and Failure Propagation (FP). This paper proposes improvements to existing FD and FP mechanisms to provide more portability, scalability, and low overhead. Results show that the methods proposed can achieve better or at least similar results to existing methods while providing portability to any MPI standard-compliant distribution.


Sign in / Sign up

Export Citation Format

Share Document