EXACT SOLUTION OF FREE IN-PLANE VIBRATION OF SHALLOW CIRCULAR ARCHES

2001 ◽  
Vol 01 (03) ◽  
pp. 409-428 ◽  
Author(s):  
EKREM TÜFEKÇİ

The free in-plane vibration of a shallow circular arch with uniform cross-section is investigated by taking into account axial extension, shear deformation and rotatory inertia effects. The exact solution of the governing differential equations is obtained by the initial value method. By employing the same solution procedure, the solutions are also given for the other cases, in which each effect is considered alone, as well as no effect. The frequency coefficients are obtained for the lowest five vibration modes of arches with five combinations of classical boundary conditions, and various slenderness ratios and opening angles. The results show that the shear deformation and rotatory inertia effects are also very important as well as the axial extension effect, even if a slender shallow arch is considered. The discrepancies among the results of the five cases decrease, when opening angle increases for a constant radius and slenderness ratio. The effects of the boundary conditions and the slenderness ratio of the arch are investigated. The discrepancies among the results of the cases become much more important in higher modes. The mode shapes of a shallow arch are obtained for each case.

2017 ◽  
Vol 17 (10) ◽  
pp. 1750111
Author(s):  
Ugurcan Eroglu ◽  
Ekrem Tufekci

In this paper, a procedure based on the transfer matrix method for obtaining the exact solution to the equations of free vibration of damaged frame structures, considering the effects of axial extension, shear deformation, rotatory inertia, and all compliance components arising due to the presence of a crack, is presented. The crack is modeled by a rotational and/or translational spring based on the concept of linear elastic fracture mechanics. Only the in-plane motion of planar structures is considered. The formulation is validated through some examples existing in the literature. Additionally, the mode shapes and natural frequencies of a frame with pitched roof are provided. The variation of natural frequencies with respect to the crack location is presented. It is concluded that considering the axial compliance, and axial-bending coupling due to the presence of a crack results in different dynamic characteristics, which should be considered for problems where high precision is required, such as for the crack identification problems.


2018 ◽  
Vol 149 ◽  
pp. 02087 ◽  
Author(s):  
A. Azrar ◽  
L. Azrar ◽  
A. A. Aljinaidi

In this research work, the transverse vibration behaviour of single-walled carbon nanotubes (SCNT) based mass sensors is studied using the Timoshenko beam and nonlocal elasticity theories. The nonlocal constitutive equations are used in the formulations and the CNT with different lengths, attached mass (viruses and bacteria) and the general boundary conditions are considered. The dimensionless frequencies and associated modes are obtained for one and two attached masses and different boundary conditions. The effects of transverse shear deformation and rotatory inertia, nonlocal parameter, length of the carbon nanotubes, and attached mass and its location are investigated in detail for each considered problem. The relationship between the frequencies and mode shapes of the sensor and the attached zeptogramme masses are obtained. The sensing devices for biological objects including viruses and bacteria can be elaborated based on the developed sensitivity and frequency shift methodological approach.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Erasmo Viola ◽  
Marco Miniaci ◽  
Nicholas Fantuzzi ◽  
Alessandro Marzani

AbstractThis paper investigates the in-plane free vibrations of multi-stepped and multi-damaged parabolic arches, for various boundary conditions. The axial extension, transverse shear deformation and rotatory inertia effects are taken into account. The constitutive equations relating the stress resultants to the corresponding deformation components refer to an isotropic and linear elastic material. Starting from the kinematic hypothesis for the in-plane displacement of the shear-deformable arch, the equations of motion are deduced by using Hamilton’s principle. Natural frequencies and mode shapes are computed using the Generalized Differential Quadrature (GDQ) method. The variable radius of curvature along the axis of the parabolic arch requires, compared to the circular arch, a more complex formulation and numerical implementation of the motion equations as well as the external and internal boundary conditions. Each damage is modelled as a combination of one rotational and two translational elastic springs. A parametric study is performed to illustrate the influence of the damage parameters on the natural frequencies of parabolic arches for different boundary conditions and cross-sections with localizeddamage.Results for the circular arch, derived from the proposed parabolic model with the derivatives of some parameters set to zero, agree well with those published over the past years.


1995 ◽  
Vol 2 (4) ◽  
pp. 321-338 ◽  
Author(s):  
Moinuddin Malik ◽  
Charles W. Bert

In the present work, laminates having two opposite edges simply supported are considered. The boundary conditions at the other two opposite edges may be general, and between these two edges, the thickness of the plate may be nonuniform. The theory used for the vibration analysis of such laminates includes shear deformation and rotatory inertia. The solution approach of the problem is semianalytical. By using the trigonometric functions describing the mode shapes between the simply supported edges, the governing plate equations are reduced to ordinary differential equations. The solution of the reduced equations is then sought by the differential quadrature method. The results reported in this article serve two objectives of the present investigations. One, it is demonstrated that the proposed semianalytical quadrature method offers a numerically accurate and computationally efficient technique for the title problem. Two, the relative effects of shear deformation and rotatory inertia are analyzed in a quantitative manner.


2013 ◽  
Vol 13 (01) ◽  
pp. 1350003 ◽  
Author(s):  
EKREM TUFEKCI ◽  
OZNUR OZDEMIRCI YIGIT

The in-plane free vibration of circular arches with continuously varying cross-sections is studied by means of the exact solution. The exact solution can be obtained only for a circular arch with constant cross-section. As an approximation, the circular arch with varying cross-sections is divided into a number of arch elements with constant cross-sections. The cross-section of each arch element is determined by averaging the upper and lower cross-sections. Then, the exact solution of free vibrations for each arch element can be obtained by using the initial value method. The axial extension, transverse shear deformation and rotatory inertia effects are included in the analysis. As the number of the arch elements increases, the fast convergence of the frequencies to those of the original arch is observed. Clamped–clamped (CC), hinged–hinged (HH), hinged–clamped (HC), clamped–free (CF) and free–free (FF) boundary conditions are studied for different opening angles, taper types and taper ratios. A detailed parametric study is performed, by which the mode transition phenomenon is observed. The results obtained are compared with those available in the literature.


1993 ◽  
Vol 20 (6) ◽  
pp. 885-894 ◽  
Author(s):  
Ian Smith ◽  
Lin J. Hu ◽  
Allison B. Schriver

A numerical model is presented for predicting the natural frequencies of one-way stiffened plates with ribs having high ratios of flexural to shear rigidity. The model is based on the free interface modal synthesis method. Experimental validation using floors with wood I-joists and wood-based sheathing showed that the model has good numerical accuracy in the predictions of natural frequencies and mode shapes if analyses include shear deformation and rotatory inertia effects in ribs. Neglect of these effects can lead to large errors in the predicted natural frequencies for plates with ribs having high ratios of flexural to shear rigidity. Large errors can also be encountered in natural frequency prediction for plates with fairly low ratios of flexural to shear rigidity. This occurs with mode shapes that have multiple curvature along ribs if shear deformation and rotatory inertia effects are neglected. Key words: free flexural vibration, natural frequencies, ribbed plates, flexural rigidity, shear rigidity, modal synthesis.


Sign in / Sign up

Export Citation Format

Share Document