Free flexural vibration analysis of one-way stiffened plates by the free interface modal synthesis method

1993 ◽  
Vol 20 (6) ◽  
pp. 885-894 ◽  
Author(s):  
Ian Smith ◽  
Lin J. Hu ◽  
Allison B. Schriver

A numerical model is presented for predicting the natural frequencies of one-way stiffened plates with ribs having high ratios of flexural to shear rigidity. The model is based on the free interface modal synthesis method. Experimental validation using floors with wood I-joists and wood-based sheathing showed that the model has good numerical accuracy in the predictions of natural frequencies and mode shapes if analyses include shear deformation and rotatory inertia effects in ribs. Neglect of these effects can lead to large errors in the predicted natural frequencies for plates with ribs having high ratios of flexural to shear rigidity. Large errors can also be encountered in natural frequency prediction for plates with fairly low ratios of flexural to shear rigidity. This occurs with mode shapes that have multiple curvature along ribs if shear deformation and rotatory inertia effects are neglected. Key words: free flexural vibration, natural frequencies, ribbed plates, flexural rigidity, shear rigidity, modal synthesis.

2017 ◽  
Vol 17 (02) ◽  
pp. 1750023 ◽  
Author(s):  
Xia-Chun Chen ◽  
Zhen-Hu Li ◽  
Francis T. K. Au ◽  
Rui-Juan Jiang

Prestressed concrete bridges with corrugated steel webs have emerged as a new form of steel-concrete composite bridges with remarkable advantages compared with the traditional ones. However, the assumption that plane sections remain plane may no longer be valid for such bridges due to the different behavior of the constituents. The sandwich beam theory is extended to predict the flexural vibration behavior of this type of bridges considering the presence of diaphragms, external prestressing tendons and interaction between the web shear deformation and flange local bending. To this end, a [Formula: see text] beam finite element is formulated. The proposed theory and finite element model are verified both numerically and experimentally. A comparison between the analyses based on the sandwich beam model and on the classical Euler–Bernoulli and Timoshenko models reveals the following findings. First of all, the extended sandwich beam model is applicable to the flexural vibration analysis of the bridges considered. By letting [Formula: see text] denote the square root of the ratio of equivalent shear rigidity to the flange local flexural rigidity, and L the span length, the combined parameter [Formula: see text] appears to be more suitable for considering the diaphragm effect and the interaction between the shear deformation and flange local bending. The diaphragms have significant effect on the flexural natural frequencies and mode shapes only when the [Formula: see text] value of the bridge falls below a certain limit. For a bridge with an [Formula: see text] value over a certain limit, the flexural natural frequencies and mode shapes obtained from the sandwich beam model and the classical Euler–Bernoulli and Timoshenko models tend to be the same. In such cases, either of the classical beam theories may be used.


Author(s):  
W. K. Kim ◽  
S. H. Sohn ◽  
H. J. Cho ◽  
D. S. Bae ◽  
J. H. Choi

In this paper, contact modeling technique and dynamics analysis of piston and cylinder system are presented by using modal synthesis method. It is very important to select mode shapes representing a global or local behavior of a flexible body due to a specified loading condition. This paper proposes a technique to generate the static correction modes which are nicely representing a motion by a contact force between a piston and cylinder. First normal modes of piston and cylinder under a boundary condition are computed, and then static correction modes due to a contact force applied at contacted nodes are added to the normal modes. Also, this paper proposes an efficient dynamics analysis process while changing the shape of the piston and cylinder. In optimization process or design study, their geometric data can be changed a bit. The slight changes of their contact surfaces make a high variation of the magnitude of a contact force, and it can yield the different dynamic behavior of an engine system. But, since the variations of the normal and correction modes are very small, the re-computation of their normal and correction modes due to the change of contact surfaces can be useless. Until now, whenever their contact surfaces are changed at a design cycle, the modes have been recomputed. Thus, most engineers in industries have been spent many times in very tedious and inefficient design process. In this paper, the normal and correction modes from the basic geometry of the piston and cylinder are computed. If the geometry shape is changed, nodal positions of the original modal model are newly calculated from an interpolation method and changed geometry data. And then the updated nodes are used to compute a precise contact force. The proposed methods illustrated in this investigation have good agreement with results of a nodal synthesis technique and proved that it is very efficient design method.


Author(s):  
Mohan D. Rao ◽  
Krishna M. Gorrepati

Abstract This paper presents the analysis of modal parameters (natural frequencies, damping ratios and mode shapes) of a simply supported beam with adhesively bonded double-strap joint by the finite-element based Modal Strain Energy (MSE) method using ANSYS 4.4A software. The results obtained by the MSE method are compared with closed form analytical solutions previously obtained by the first author for flexural vibration of the same system. Good agreement has been obtained between the two methods for both the natural frequencies and system loss factors. The effects of structural parameters and material properties of the adhesive on the modal properties of the joint system are also studied which are useful in the design of the joint system for passive vibration and noise control. In order to evaluate the MSE and analytical results, some experiments were conducted using aluminum double-strap joint with 3M ISD112 damping material. The experimental results agreed well with both analytical and MSE results indicating the validity of both analytical and MSE methods. Finally, a comparative study has been conducted using various commercially available damping materials to evaluate their relative merits for use in the design of these joints.


1962 ◽  
Vol 66 (616) ◽  
pp. 240-241 ◽  
Author(s):  
C. L. Kirk

Recently Cox and Boxer determined natural frequencies and mode shapes of flexural vibration of uniform rectangular isotropic plates, that have free edges and pinpoint supports at the four corners. In their analysis, they obtain approximate solutions of the differential equation through the use of finite difference expressions and an electronic digital computer. In the present note, the frequency expression and mode shape for a square plate, vibrating at the lowest natural frequency, are determined by considerations of energy. The values obtained are compared with those given in reference.


2016 ◽  
Vol 54 (6) ◽  
pp. 785 ◽  
Author(s):  
Nguyen Tien Khiem ◽  
Nguyen Ngoc Huyen

Free vibration of FGM Timoshenko beam is investigated on the base of the power law distribution of FGM. Taking into account the actual position of neutral plane enables to obtain general condition for uncoupling of axial and flexural vibrations in FGM beam. This condition defines a class of functionally graded beams for which axial and flexural vibrations are completely uncoupled likely to the homogeneous beams. Natural frequencies and mode shapes of uncoupled flexural vibration of beams from the class are examined in dependence on material parameters and slendernes


1997 ◽  
Vol 119 (3) ◽  
pp. 476-484 ◽  
Author(s):  
M. Amabili

In this paper, the free flexural vibrations of a partially fluid-loaded simply supported circular cylindrical shell are studied; the fluid is assumed to be inviscid and to present a free-surface parallel to the shell axis. The presence of external and internal fluids are both studied and the problem for incompressible and compressible fluid are both discussed by using the added virtual mass approach. Circumferential dependence of displacement is extended in a Fourier series. The maximum potential energy of the cylinder is evaluated using a sum of reference kinetic energies of the shell vibrating in vacuum; this fact allows the proposed method to be independent from the theory of shells used. Then, the Rayleigh quotient for fluid-shell coupled vibration is formulated and minimized to obtain the Galerkin equation whose solution gives the natural frequencies and mode shapes. Numerical computations are performed to obtain the modal characteristics as functions of the level of water in contact with the shell in the range of good accuracy of the theory, that is around the half-wet shell level. Results for both a shell partially surrounded and filled with water are obtained and compared.


2017 ◽  
Vol 17 (10) ◽  
pp. 1750111
Author(s):  
Ugurcan Eroglu ◽  
Ekrem Tufekci

In this paper, a procedure based on the transfer matrix method for obtaining the exact solution to the equations of free vibration of damaged frame structures, considering the effects of axial extension, shear deformation, rotatory inertia, and all compliance components arising due to the presence of a crack, is presented. The crack is modeled by a rotational and/or translational spring based on the concept of linear elastic fracture mechanics. Only the in-plane motion of planar structures is considered. The formulation is validated through some examples existing in the literature. Additionally, the mode shapes and natural frequencies of a frame with pitched roof are provided. The variation of natural frequencies with respect to the crack location is presented. It is concluded that considering the axial compliance, and axial-bending coupling due to the presence of a crack results in different dynamic characteristics, which should be considered for problems where high precision is required, such as for the crack identification problems.


1980 ◽  
Vol 47 (3) ◽  
pp. 662-666 ◽  
Author(s):  
Z. Celep

In this paper, the free flexural vibration of an elastic rectangular plate having initial imperfection is investigated including the effects of transverse shear and rotatory inertia. It is assumed that the vibration occurs with large amplitudes which leads to nonlinear differantial equations. On the basis of an assumed vibration mode, the modal equation of the plate is obtained and solved numerically.


Sign in / Sign up

Export Citation Format

Share Document