A NEW METHODOLOGY FOR EVALUATING THE SAFE TEMPERATURE IN CONTINUOUS WELDED RAIL TRACKS

2013 ◽  
Vol 13 (02) ◽  
pp. 1350016 ◽  
Author(s):  
J. CARVALHO ◽  
J. DELGADO ◽  
R. CALÇADA ◽  
R. DELGADO

The use of continuous welded rails (CWR) is increasingly common and is particularly important when it comes to high-speed ballasted tracks. As the longitudinal displacements are restricted in CWR tracks, a considerable rise in temperature induces compressive stresses in the rails that can lead to track buckling. Given the nonlinear behavior of the ballast, usually represented by a linear plastic model, the problem of snap-through buckling may occur, for which only a few nonlinear analysis methods can trace the full response of the track structure. However, these methods fail to yield convergent solutions for problems with thermal loads when implemented in their conventional algorithm. For this reason, a new methodology is presented allowing the calculation of the safe temperature. In addition, some analytical results are also derived for comparison with the numerical results, obtained using three-dimensional finite element beam models provided by ANSYS.

2005 ◽  
Vol 11 (12) ◽  
pp. 1437-1453 ◽  
Author(s):  
Judith C. Wang ◽  
Xiangwu Zeng ◽  
Robert L. Mullen

In this paper we discuss the benefits of using rubber-modified asphalt concrete in high-speed railway foundations. We present the results from a series of three-dimensional finite element simulations modeling a high-speed train foundation utilizing various trackbed materials. Four trackbed materials were tested for their relative vibration attenuation capacities: ballast, concrete, conventional asphalt concrete, and rubber-modified asphalt concrete. Additionally, studies varying the speed and the weight of the passing train were performed. Parametric studies varying the dimensions of the trackbed underlayment were also examined. From these numerical simulations, it is shown that rubber-modified asphalt concrete outperforms other traditional paving materials in ground vibration attenuation. It is also shown that the speeds and weights of the passing trains and the dimensions of the trackbed have significant effects on the relative performance of the paving materials. Implications for design are discussed.


Sign in / Sign up

Export Citation Format

Share Document