Seismic Fragility Analysis of Reinforced Concrete Bridges with Chloride Induced Corrosion Subjected to Spatially Varying Ground Motions

2016 ◽  
Vol 16 (05) ◽  
pp. 1550010 ◽  
Author(s):  
Chao Li ◽  
Hong Hao ◽  
Hongnan Li ◽  
Kaiming Bi

This paper studies the time-dependent seismic fragility of reinforced concrete bridges with chloride induced corrosion under spatially varying ground motions. The time-varying characteristic of the chloride corrosion current density and the uncertainties related to the structural, material and corrosion parameters are both considered in the probabilistic finite element modeling of the example RC bridge at different time steps during its life-cycle. Spatially varying ground motions at different bridge supports are stochastically simulated and used as inputs in the fragility analysis. Seismic fragility curves of the corroded RC bridge at different time steps are generated using the probabilistic seismic demand analysis (PSDA) method. Numerical results indicate that both chloride induced corrosion and ground motion spatial variations have a significant effect on the bridge structural seismic fragility. As compared to the intact bridge, the mean peak ground accelerations (PGAs) of the fragility curves of the RC bridge decrease by approximately 40% after 90 years since the initiation of corrosion. Moreover, the effect of ground motion spatial variations changes along with the process of chloride induced corrosion owing to the structural stiffness degradation. Neglecting seismic ground motion spatial variations may not lead to an accurate estimation of the lifetime seismic fragility of RC bridges with chloride induced corrosion.

2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Li Tian ◽  
Hongnan Li ◽  
Guohuan Liu

The behavior of power transmission tower-line system subjected to spatially varying base excitations is studied in this paper. The transmission towers are modeled by beam elements while the transmission lines are modeled by cable elements that account for the nonlinear geometry of the cables. The real multistation data from SMART-1 are used to analyze the system response subjected to spatially varying ground motions. The seismic input waves for vertical and horizontal ground motions are also generated based on the Code for Design of Seismic of Electrical Installations. Both the incoherency of seismic waves and wave travel effects are accounted for. The nonlinear time history analytical method is used in the analysis. The effects of boundary conditions, ground motion spatial variations, the incident angle of the seismic wave, coherency loss, and wave travel on the system are investigated. The results show that the uniform ground motion at all supports of system does not provide the most critical case for the response calculations.


Abstract. Seismic fragility analysis is essential for seismic risk assessment of structures. This study focuses on the damage probability assessment of the mid-story isolation buildings with different locations of the isolation system. To this end, the performance-based fragility analysis method of the mid-story isolation system is proposed, adopting the maximum story drifts of structures above and below the isolation layer and displacement of the isolation layer as performance indicators. Then, the entire process of the mid-story isolation system, from the initial elastic state to the elastic-plastic state, then to the limit state, is simulated on the basis of the incremental dynamic analysis method. Seismic fragility curves are obtained for mid-story isolation buildings with different locations of the isolation layer, each with fragility curves for near-field and far-field ground motions, respectively. The results indicate that the seismic fragility probability subjected to the near-field ground motions is much greater than those subjected to the far-field ground motions. In addition, with the increase of the location of the isolation layer, the dominant components for the failure of mid-story isolated structures change from superstructure and isolation system to substructure and isolation system.


2009 ◽  
Vol 31 (4) ◽  
pp. 275-283 ◽  
Author(s):  
Do-Eun Choe ◽  
Paolo Gardoni ◽  
David Rosowsky ◽  
Terje Haukaas

Sign in / Sign up

Export Citation Format

Share Document