scholarly journals On Elastoplastic Buckling Analysis of Cylinders Under Nonproportional Loading by Differential Quadrature Method

2017 ◽  
Vol 17 (07) ◽  
pp. 1750072 ◽  
Author(s):  
Rabee Shamass ◽  
Giulio Alfano ◽  
Federico Guarracino

The paper investigates the elastoplastic buckling of thin circular shells subjected to nonproportional loading consisting of axial tensile stress and external pressure. The governing equations of buckling for cylindrical shells derived by Flugge serve as the basis of analysis. To capture the elastic/plastic behavior, two plasticity theories are considered; the flow theory and the deformation theory of plasticity. Plastic buckling pressures for cylinders with various combinations of boundary conditions are presented for which no analytical solutions are available. The results obtained from the flow and deformation theories confirm that, under over-constrained kinematic assumptions, the deformation theory tends to provide lower values of buckling pressure and the discrepancies in the results from the two plasticity theories increase with increasing thickness-to-radius ratios, tensile stresses, boundary clamping and E/[Formula: see text] ratios. The plastic buckling results obtained by means of the differential quadrature method are compared with carefully conducted FEA results for both the flow and the deformation theory of plasticity. The reasons underlying the apparent plastic buckling paradox are thus investigated for a vast class of boundary conditions and loads.

Author(s):  
Siu-Tong Choi ◽  
Yu-Tuan Chou

Abstract The differential quadrature method has lately been more and more often used for analysis of engineering problems as an alternative for the finite element method or finite difference method. In this paper, static, dynamic and buckling analyses of structural components are performed by the differential quadrature method. To improve the accuracy of this method, an approach is proposed for selecting the sampling points which include base points and conditional points. The base points are taken as the roots of the Legendre polynomials. Accuracy of the problems analyzed will be increased by using the base points. The conditional points are determined according to boundary conditions and specified conditions of external load. A modified algorithm is proposed for applying two or more boundary conditions in a sampling point at boundary of domain, such that the higher-order partial differential equation can be solved without adding new sampling points. By applying this approach to variety problems, such as deflections of beam under nonuniformly distributed loading, vibration and buckling analyses of beam and plate, it is found that numerical results of the present approach are more accurate than those obtained by the equally-spaced differential quadrature method and is computationally efficient.


2019 ◽  
Vol 24 (2) ◽  
pp. 217-227
Author(s):  
Mostafa Talebitooti

A layerwise-differential quadrature method (LW-DQM) is developed for the vibration analysis of a stiffened laminated conical shell. The circumferential stiffeners (rings) and meridional stiffeners (stringers) are treated as discrete elements. The motion equations are derived by applying the Hamilton’s principle. In order to accurately account for the thickness effects and the displacement field of stiffeners, the layerwise theory is used to discretize the equations of motion and the related boundary conditions through the thickness. Then, the equations of motion as well as the boundary condition equations are transformed into a set of algebraic equations applying the DQM in the meridional direction. The advantage of the proposed model is its applicability to thin and thick unstiffened and stiffened shells with arbitrary boundary conditions. In addition, the axial load and external pressure is applied to the shell as a ratio of the global buckling load and pressure. This study demonstrates the accuracy, stability, and the fast rate of convergence of the present method, for the buckling and vibration analyses of stiffened conical shells. The presented results are compared with those of other shell theories and a special case where the angle of conical shell approaches zero, i.e. a cylindrical shell, and excellent agreements are achieved.


2019 ◽  
Vol 55 (1-2) ◽  
pp. 42-52
Author(s):  
Milad Ranjbaran ◽  
Rahman Seifi

This article proposes a new method for the analysis of free vibration of a cracked isotropic plate with various boundary conditions based on Kirchhoff’s theory. The isotropic plate is assumed to have a part-through surface or internal crack. The crack is considered parallel to one of the plate edges. Existence of the crack modified the governing differential equations which were formulated based on the line-spring model. Generalized differential quadrature method discretizes the obtained governing differential equations and converts them into an algebraic system of equations. Then, an eigenvalue analysis was used to determine the natural frequencies of the cracked plates. Some numerical results are given to demonstrate the accuracy and convergence of the obtained results. To demonstrate the efficiency of the method, the results were compared with finite element solutions and available literature. Also, effects of the crack depth, its location along the thickness, the length of the crack and different boundary conditions on the natural frequencies were investigated.


2016 ◽  
Vol 23 (19) ◽  
pp. 3247-3265 ◽  
Author(s):  
Majid Ghadiri ◽  
Navvab Shafiei

This study investigates the small-scale effect on the flapwise bending vibrations of a rotating nanoplate that can be the basis of nano-turbine design. The nanoplate is modeled as classical plate theory (CPT) with boundary conditions as the cantilever and propped cantilever. The axial forces are also included in the model as the true spatial variation due to the rotation. Hamilton’s principle is used to derive the governing equation and boundary conditions for the classic plate based on Eringen’s nonlocal elasticity theory and the differential quadrature method is employed to solve the governing equations. The effect of the small-scale parameter, nondimensional angular velocity, nondimensional hub radius, setting angle and different boundary conditions in the first four nondimensional frequencies is discussed. Due to considering rotating effects, results of this study are applicable in nanomachines such as nanomotors and nano-turbines and other nanostructures.


2017 ◽  
Vol 24 (17) ◽  
pp. 3908-3919 ◽  
Author(s):  
Mouafo Teifouet Armand Robinson

The two-dimensional viscoelastic differential constitutive relation is employed in this paper, in order to establish the equation of motion of axially moving viscoelastic rectangular plate. Two boundary conditions are investigated, namely the clamped free and two opposite edges simply supported and two others free. The differential quadrature method is used to solve the resulting complex eigenvalues equation. The influence of boundary conditions on the instability of a moving viscoelastic plate is analyzed firstly, and secondly the effects of system parameters such as plate's viscosity and aspect ratio on the vibration frequencies are presented.


2019 ◽  
Vol 11 (08) ◽  
pp. 1950073 ◽  
Author(s):  
H. Bisheh ◽  
A. Alibeigloo ◽  
M. Safarpour ◽  
A. R. Rahimi

Free vibrational and bending behavior of functionally graded graphene platelet reinforced composite (FG-GPLRC) circular and annular plate with various boundary conditions is studied using the differential quadrature method (DQM). The weight fraction differs gradually across the thickness direction. Effective elasticity modulus of the nanocomposite has been estimated by the modified Halpin–Tsai model. Using equations of motion in the framework of the elasticity theory and constitutive relation, the state-space first-order differential equation along the thickness direction is derived. A semi-analytical solution is carried out based on the application of DQM along the radial direction and the state-space technique across the thickness of the plate. The present approach is validated by comparing the numerical results with those reported in the literature. Effect of graphene platelets (GPLs) weight fraction, different GPL distribution patterns, thickness-to-radius and outer-to-inner radius ratios and edge boundary conditions on the static and vibrational behavior of GPLs reinforced composite circular/annular plates are examined. The results implied that GPLs can improve the composite strength against different loading and GPLs could have an extraordinary reinforcing influence on the static and vibrational behavior of the circular/annular plates.


Sign in / Sign up

Export Citation Format

Share Document