Text Region Extraction From Scene Images Using AGF and MSER

2020 ◽  
Vol 20 (02) ◽  
pp. 2050009
Author(s):  
Rituraj Soni ◽  
Bijendra Kumar ◽  
Satish Chand

The natural scene images contain text as an integral part of that image that supplies paramount knowledge about it. This information and knowledge can be used in the variety of purposes like image-based searching, automatic number plate recognition, robot navigation, etc. but text region extraction and detection in scenery images could be quite a challenging job due to image blur, distortion, noise, etc. In this paper, we discuss a method for extraction of text regions by generating prospective components by applying maximally stable extremal regions (MSER) and boundary smoothing by Alternating guided image filter, which is one of the newest filters to deal with noise and halo effect elimination. The separation of non-text & text components is achieved by AdaBoost classifier that separates text and non-text on the basis of the three text specific features namely maximum stroke width ratio, compactness, color divergence. The proposed method assist in extracting text regions from the blurred and low contrast natural scene images effectively. The ICDAR 2013 training and testing dataset is applied for the experiments and evaluation of the method. The evaluation is carried out using deteval software for calculating precision, f-measure, recall for the detected, and extracted text regions.

2019 ◽  
pp. 30-33
Author(s):  
U. R. Khamdamov ◽  
M. N. Mukhiddinov ◽  
A. O. Mukhamedaminov ◽  
O. N. Djuraev

Author(s):  
Pushpendra Singh ◽  
P.N. Hrisheekesha ◽  
Vinai Kumar Singh

Content based image retrieval (CBIR) is one of the field for information retrieval where similar images are retrieved from database based on the various image descriptive parameters. The image descriptor vector is used by machine learning based systems to store, learn and template matching. These feature descriptor vectors locally or globally demonstrate the visual content present in an image using texture, color, shape, and other information. In past, several algorithms were proposed to fetch the variety of contents from an image based on which the image is retrieved from database. But, the literature suggests that the precision and recall for the gained results using single content descriptor is not significant. The main vision of this paper is to categorize and evaluate those algorithms, which were proposed in the interval of last 10 years. In addition, experiment is performed using a hybrid content descriptors methodology that helps to gain the significant results as compared with state-of-art algorithms. The hybrid methodology decreases the error rate and improves the precision and recall for large natural scene images dataset having more than 20 classes.


2021 ◽  
Vol 40 (1) ◽  
pp. 551-563
Author(s):  
Liqiong Lu ◽  
Dong Wu ◽  
Ziwei Tang ◽  
Yaohua Yi ◽  
Faliang Huang

This paper focuses on script identification in natural scene images. Traditional CNNs (Convolution Neural Networks) cannot solve this problem perfectly for two reasons: one is the arbitrary aspect ratios of scene images which bring much difficulty to traditional CNNs with a fixed size image as the input. And the other is that some scripts with minor differences are easily confused because they share a subset of characters with the same shapes. We propose a novel approach combing Score CNN, Attention CNN and patches. Attention CNN is utilized to determine whether a patch is a discriminative patch and calculate the contribution weight of the discriminative patch to script identification of the whole image. Score CNN uses a discriminative patch as input and predict the score of each script type. Firstly patches with the same size are extracted from the scene images. Secondly these patches are used as inputs to Score CNN and Attention CNN to train two patch-level classifiers. Finally, the results of multiple discriminative patches extracted from the same image via the above two classifiers are fused to obtain the script type of this image. Using patches with the same size as inputs to CNN can avoid the problems caused by arbitrary aspect ratios of scene images. The trained classifiers can mine discriminative patches to accurately identify some confusing scripts. The experimental results show the good performance of our approach on four public datasets.


Author(s):  
Sankirti Sandeep Shiravale ◽  
R. Jayadevan ◽  
Sanjeev S. Sannakki

Text present in a camera captured scene images is semantically rich and can be used for image understanding. Automatic detection, extraction, and recognition of text are crucial in image understanding applications. Text detection from natural scene images is a tedious task due to complex background, uneven light conditions, multi-coloured and multi-sized font. Two techniques, namely ‘edge detection' and ‘colour-based clustering', are combined in this paper to detect text in scene images. Region properties are used for elimination of falsely generated annotations. A dataset of 1250 images is created and used for experimentation. Experimental results show that the combined approach performs better than the individual approaches.


Author(s):  
HUA YANG ◽  
MASAAKI KASHIMURA ◽  
NORIKADU ONDA ◽  
SHINJI OZAWA

This paper describes a new system for extracting and classifying bibliography regions from the color image of a book cover. The system consists of three major components: preprocessing, color space segmentation and text region extraction and classification. Preprocessing extracts the edge lines of the book and geometrically corrects and segments the input image, into the parts of front cover, spine and back cover. The same as all color image processing researches, the segmentation of color space is an essential and important step here. Instead of RGB color space, HSI color space is used in this system. The color space is segmented into achromatic and chromatic regions first; and both the achromatic and chromatic regions are segmented further to complete the color space segmentation. Then text region extraction and classification follow. After detecting fundamental features (stroke width and local label width) text regions are determined. By comparing the text regions on front cover with those on spine, all extracted text regions are classified into suitable bibliography categories: author, title, publisher and other information, without applying OCR.


Sign in / Sign up

Export Citation Format

Share Document