Reflected BSDEs when the obstacle is predictable and nonlinear optimal stopping problem

2021 ◽  
pp. 2150049
Author(s):  
Siham Bouhadou ◽  
Youssef Ouknine

In the first part of this paper, we study RBSDEs in the case where the filtration is non-quasi-left-continuous and the lower obstacle is given by a predictable process. We prove the existence and uniqueness by using some results of optimal stopping theory in the predictable setting, some tools from general theory of processes as the Mertens decomposition of predictable strong supermartingale. In the second part, we introduce an optimal stopping problem indexed by predictable stopping times with the nonlinear predictable [Formula: see text] expectation induced by an appropriate backward stochastic differential equation (BSDE). We establish some useful properties of [Formula: see text]-supremartingales. Moreover, we show the existence of an optimal predictable stopping time, and we characterize the predictable value function in terms of the first component of RBSDEs studied in the first part.

2006 ◽  
Vol 43 (4) ◽  
pp. 984-996 ◽  
Author(s):  
Anne Laure Bronstein ◽  
Lane P. Hughston ◽  
Martijn R. Pistorius ◽  
Mihail Zervos

We consider the problem of optimally stopping a general one-dimensional Itô diffusion X. In particular, we solve the problem that aims at maximising the performance criterion Ex[exp(-∫0τr(Xs)ds)f(Xτ)] over all stopping times τ, where the reward function f can take only a finite number of values and has a ‘staircase’ form. This problem is partly motivated by applications to financial asset pricing. Our results are of an explicit analytic nature and completely characterise the optimal stopping time. Also, it turns out that the problem's value function is not C1, which is due to the fact that the reward function f is not continuous.


2018 ◽  
Vol 64 ◽  
pp. 93-110 ◽  
Author(s):  
Roxana Dumitrescu ◽  
Marie-Claire Quenez ◽  
Agnès Sulem

We study pricing and hedging for American options in an imperfect market model with default, where the imperfections are taken into account via the nonlinearity of the wealth dynamics. The payoff is given by an RCLL adapted process (ξt). We define the seller's price of the American option as the minimum of the initial capitals which allow the seller to build up a superhedging portfolio. We prove that this price coincides with the value function of an optimal stopping problem with a nonlinear expectation 𝓔g (induced by a BSDE), which corresponds to the solution of a nonlinear reflected BSDE with obstacle (ξt). Moreover, we show the existence of a superhedging portfolio strategy. We then consider the buyer's price of the American option, which is defined as the supremum of the initial prices which allow the buyer to select an exercise time τ and a portfolio strategy φ so that he/she is superhedged. We show that the buyer's price is equal to the value function of an optimal stopping problem with a nonlinear expectation, and that it can be characterized via the solution of a reflected BSDE with obstacle (ξt). Under the additional assumption of left upper semicontinuity along stopping times of (ξt), we show the existence of a super-hedge (τ, φ) for the buyer.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Lu Ye

This paper considers the optimal stopping problem for continuous-time Markov processes. We describe the methodology and solve the optimal stopping problem for a broad class of reward functions. Moreover, we illustrate the outcomes by some typical Markov processes including diffusion and Lévy processes with jumps. For each of the processes, the explicit formula for value function and optimal stopping time is derived. Furthermore, we relate the derived optimal rules to some other optimal problems.


2020 ◽  
Vol 24 ◽  
pp. 935-962
Author(s):  
Song Yao

Given p ∈ (1, 2), we study 𝕃p-solutions of a reflected backward stochastic differential equation with jumps (RBSDEJ) whose generator g is Lipschitz continuous in (y, z, u). Based on a general comparison theorem as well as the optimal stopping theory for uniformly integrable processes under jump filtration, we show that such a RBSDEJ with p-integrable parameters admits a unique 𝕃p solution via a fixed-point argument. The Y -component of the unique 𝕃p solution can be viewed as the Snell envelope of the reflecting obstacle 𝔏 under g-evaluations, and the first time Y meets 𝔏 is an optimal stopping time for maximizing the g-evaluation of reward 𝔏.


2006 ◽  
Vol 43 (04) ◽  
pp. 984-996 ◽  
Author(s):  
Anne Laure Bronstein ◽  
Lane P. Hughston ◽  
Martijn R. Pistorius ◽  
Mihail Zervos

We consider the problem of optimally stopping a general one-dimensional Itô diffusion X. In particular, we solve the problem that aims at maximising the performance criterion E x [exp(-∫0 τ r(X s )ds)f(X τ)] over all stopping times τ, where the reward function f can take only a finite number of values and has a ‘staircase’ form. This problem is partly motivated by applications to financial asset pricing. Our results are of an explicit analytic nature and completely characterise the optimal stopping time. Also, it turns out that the problem's value function is not C 1, which is due to the fact that the reward function f is not continuous.


1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


2014 ◽  
Vol 51 (03) ◽  
pp. 885-889 ◽  
Author(s):  
Tomomi Matsui ◽  
Katsunori Ano

In this note we present a bound of the optimal maximum probability for the multiplicative odds theorem of optimal stopping theory. We deal with an optimal stopping problem that maximizes the probability of stopping on any of the last m successes of a sequence of independent Bernoulli trials of length N, where m and N are predetermined integers satisfying 1 ≤ m < N. This problem is an extension of Bruss' (2000) odds problem. In a previous work, Tamaki (2010) derived an optimal stopping rule. We present a lower bound of the optimal probability. Interestingly, our lower bound is attained using a variation of the well-known secretary problem, which is a special case of the odds problem.


1998 ◽  
Vol 35 (04) ◽  
pp. 856-872 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peskir

Explicit formulas are found for the payoff and the optimal stopping strategy of the optimal stopping problem supτ E (max0≤t≤τ X t − c τ), where X = (X t ) t≥0 is geometric Brownian motion with drift μ and volatility σ > 0, and the supremum is taken over all stopping times for X. The payoff is shown to be finite, if and only if μ < 0. The optimal stopping time is given by τ* = inf {t > 0 | X t = g * (max0≤t≤s X s )} where s ↦ g *(s) is the maximal solution of the (nonlinear) differential equation under the condition 0 < g(s) < s, where Δ = 1 − 2μ / σ2 and K = Δ σ2 / 2c. The estimate is established g *(s) ∼ ((Δ − 1) / K Δ)1 / Δ s 1−1/Δ as s → ∞. Applying these results we prove the following maximal inequality: where τ may be any stopping time for X. This extends the well-known identity E (sup t>0 X t ) = 1 − (σ 2 / 2 μ) and is shown to be sharp. The method of proof relies upon a smooth pasting guess (for the Stephan problem with moving boundary) and the Itô–Tanaka formula (being applied two-dimensionally). The key point and main novelty in our approach is the maximality principle for the moving boundary (the optimal stopping boundary is the maximal solution of the differential equation obtained by a smooth pasting guess). We think that this principle is by itself of theoretical and practical interest.


2006 ◽  
Vol 43 (01) ◽  
pp. 102-113
Author(s):  
Albrecht Irle

We consider the optimal stopping problem for g(Z n ), where Z n , n = 1, 2, …, is a homogeneous Markov sequence. An algorithm, called forward improvement iteration, is presented by which an optimal stopping time can be computed. Using an iterative step, this algorithm computes a sequence B 0 ⊇ B 1 ⊇ B 2 ⊇ · · · of subsets of the state space such that the first entrance time into the intersection F of these sets is an optimal stopping time. Various applications are given.


2010 ◽  
Vol 47 (04) ◽  
pp. 1072-1083 ◽  
Author(s):  
Pieter Allaart

Let (B t )0≤t≤T be either a Bernoulli random walk or a Brownian motion with drift, and let M t := max{B s: 0 ≤ s ≤ t}, 0 ≤ t ≤ T. In this paper we solve the general optimal prediction problem sup0≤τ≤T E[f(M T − B τ], where the supremum is over all stopping times τ adapted to the natural filtration of (B t ) and f is a nonincreasing convex function. The optimal stopping time τ* is shown to be of ‘bang-bang’ type: τ* ≡ 0 if the drift of the underlying process (B t ) is negative and τ* ≡ T if the drift is positive. This result generalizes recent findings of Toit and Peskir (2009) and Yam, Yung and Zhou (2009), and provides additional mathematical justification for the dictum in finance that one should sell bad stocks immediately, but keep good stocks as long as possible.


Sign in / Sign up

Export Citation Format

Share Document