Local types of Prüfer rings

2019 ◽  
Vol 18 (03) ◽  
pp. 1950042
Author(s):  
Lee Klingler ◽  
Thomas G. Lucas ◽  
Madhav Sharma

Earlier papers by Glaz, Boynton, and the authors established hierarchies of properties for commutative rings in general which become equivalent to “Prüfer domain” for integral domains. Between Gaussian rings and Prüfer rings, these papers considered locally (respectively, maximally) Prüfer (respectively, strong Prüfer) rings. In this paper, we refine these hierarchies still further by considering the restriction of these local conditions to just the regular (respectively, semiregular) prime (respectively, maximal) ideals of the ring. In addition, we also consider these local conditions for [Formula: see text]-Prüfer rings. This refinement leads to a hierarchy of 21 conditions between locally strong Prüfer rings and Prüfer rings, of which 17 are inequivalent. We also determine the extent to which these conditions pass between a ring and its total quotient ring.

1977 ◽  
Vol 29 (5) ◽  
pp. 914-927 ◽  
Author(s):  
John Chuchel ◽  
Norman Eggert

It is well known that the complete quotient ring of a Noetherian ring coincides with its classical quotient ring, as shown in Akiba [1]. But in general, the structure of the complete quotient ring of a given ring is largely unknown. This paper investigates the structure of the complete quotient ring of certain Prüfer rings. Boisen and Larsen [2] considered conditions under which a Prüfer ring is a homomorphic image of a Prüfer domain and the properties inherited from the domain. We restrict our investigation primarily to homomorphic images of semilocal Prüfer domains. We characterize the complete quotient ring of a semilocal Prüfer domain in terms of complete quotient rings of local rings and a completion of a topological ring.


1991 ◽  
Vol 43 (2) ◽  
pp. 233-239 ◽  
Author(s):  
S. Visweswaran

In this note we consider commutative rings with identity over which every unitary module is a zero-divisor module. We call such rings Universally Zero-divisor (UZD) rings. We show (1) a Noetherian ring R is a UZD if and only if R is semilocal and the Krull dimension of R is at most one, (2) a Prüfer domain R is a UZD if and only if R has only a finite number of maximal ideals, and (3) if a ring R has Noetherian spectrum and descending chain condition on prime ideals then R is a UZD if and only if Spec (R) is a finite set. The question of ascent and descent of the property of a ring being a UZD with respect to integral extension of rings has also been answered.


ISRN Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Dmitry Malinin

We consider finite nilpotent groups of matrices over commutative rings. A general result concerning the diagonalization of matrix groups in the terms of simple conditions for matrix entries is proven. We also give some arithmetic applications for representations over Dedekind rings.


2019 ◽  
Vol 13 (07) ◽  
pp. 2050121
Author(s):  
M. Aijaz ◽  
S. Pirzada

Let [Formula: see text] be a commutative ring with unity [Formula: see text]. The annihilating-ideal graph of [Formula: see text], denoted by [Formula: see text], is defined to be the graph with vertex set [Formula: see text] — the set of non-zero annihilating ideals of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] adjacent if and only if [Formula: see text]. Some connections between annihilating-ideal graphs and zero divisor graphs are given. We characterize the prime ideals (or equivalently maximal ideals) of [Formula: see text] in terms of their degrees as vertices of [Formula: see text]. We also obtain the metric dimension of annihilating-ideal graphs of commutative rings.


2012 ◽  
Vol 11 (06) ◽  
pp. 1250112 ◽  
Author(s):  
PAUL-JEAN CAHEN ◽  
DAVID E. DOBBS ◽  
THOMAS G. LUCAS

For a pair of rings S ⊆ T and a nonnegative integer n, an element t ∈ T\S is said to be within n steps of S if there is a saturated chain of rings S = S0 ⊊ S1 ⊊ ⋯ ⊊ Sm = S[t] with length m ≤ n. An integral domain R is said to be n-valuative (respectively, finitely valuative) if for each nonzero element u in its quotient field, at least one of u and u-1 is within n (respectively, finitely many) steps of R. The integral closure of a finitely valuative domain is a Prüfer domain. Moreover, an n-valuative domain has at most 2n + 1 maximal ideals; and an n-valuative domain with 2n + 1 maximal ideals must be a Prüfer domain.


2012 ◽  
Vol 55 (1) ◽  
pp. 127-137 ◽  
Author(s):  
John D. LaGrange

AbstractThe zero-divisor graph Γ(R) of a commutative ring R is the graph whose vertices consist of the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy = 0. In this paper, a characterization is provided for zero-divisor graphs of Boolean rings. Also, commutative rings R such that Γ(R) is isomorphic to the zero-divisor graph of a direct product of integral domains are classified, as well as those whose zero-divisor graphs are central vertex complete.


2007 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Ayman Badawi

Suppose that R is a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. It is shown that a nonzero proper ideal I of R is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1,I2,I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown that if I is a 2-absorbing ideal of R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ⋂ P2 where P1,P2 are the only distinct prime ideals of R that are minimal over I. Rings with the property that every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing ideals of valuation domains and Prüfer domains are completely described. It is shown that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of R, then it is shown that an integral domain R is an almost Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R.


2012 ◽  
Vol 11 (06) ◽  
pp. 1250114 ◽  
Author(s):  
MENG YE ◽  
TONGSUO WU

In this paper, a new kind of graph on a commutative ring R with identity, namely the co-maximal ideal graph is defined and studied. We use [Formula: see text] to denote this graph, with its vertices the proper ideals of R which are not contained in the Jacobson radical of R, and two vertices I1 and I2 are adjacent if and only if I1 + I2 = R. We show some properties of this graph. For example, this graph is a simple, connected graph with diameter less than or equal to three, and both the clique number and the chromatic number of the graph are equal to the number of maximal ideals of the ring R.


1973 ◽  
Vol 25 (5) ◽  
pp. 1002-1005
Author(s):  
Thomas Cheatham

In [4, Theorem 4.1, p. 45], Enochs characterizes the integral domains with the property that the direct product of any family of torsion-free covers is a torsion-free cover. In a setting which includes integral domains as a special case, we consider the corresponding question for direct sums. We use the notion of torsion introduced by Goldie [5]. Among commutative rings, we show that the property “any direct sum of torsion-free covers is a torsion-free cover“ characterizes the semi-simple Artinian rings.


Sign in / Sign up

Export Citation Format

Share Document