On almost valuation ring pairs

Author(s):  
Noômen Jarboui ◽  
David E. Dobbs

If [Formula: see text] are (commutative) rings, [Formula: see text] denotes the set of intermediate rings and [Formula: see text] is called an almost valuation (AV)-ring pair if each element of [Formula: see text] is an AV-ring. Many results on AV-domains and their pairs are generalized to the ring-theoretic setting. Let [Formula: see text] be rings, with [Formula: see text] denoting the integral closure of [Formula: see text] in [Formula: see text]. Then [Formula: see text] is an AV-ring pair if and only if both [Formula: see text] and [Formula: see text] are AV-ring pairs. Characterizations are given for the AV-ring pairs arising from integrally closed (respectively, integral; respectively, minimal) ring extensions [Formula: see text]. If [Formula: see text] is an AV-ring pair, then [Formula: see text] is a P-extension. The AV-ring pairs [Formula: see text] arising from root extensions are studied extensively. Transfer results for the “AV-ring” property are obtained for pullbacks of [Formula: see text] type, with applications to pseudo-valuation domains, integral minimal ring extensions, and integrally closed maximal non-AV subrings. Several sufficient conditions are given for [Formula: see text] being an AV-ring pair to entail that [Formula: see text] is an overring of [Formula: see text], but there exist domain-theoretic counter-examples to such a conclusion in general. If [Formula: see text] is an AV-ring pair and [Formula: see text] satisfies FCP, then each intermediate ring either contains or is contained in [Formula: see text]. While all AV-rings are quasi-local going-down rings, examples in positive characteristic show that an AV-domain need not be a divided domain or a universally going-down domain.

2016 ◽  
Vol 15 (05) ◽  
pp. 1650099 ◽  
Author(s):  
Noômen Jarboui ◽  
Salma Trabelsi

Let [Formula: see text] be a (unital) extension of (commutative) rings. We say that [Formula: see text] is a maximal non-quasi-local (respectively, non-PVD) subring of [Formula: see text] if [Formula: see text] is not quasi-local (respectively, PVD) and each subring of [Formula: see text] properly containing [Formula: see text] is quasi-local (respectively, PVD). The aim of this paper is to study this kind of ring extensions and to investigate the structure of the intermediate rings between [Formula: see text] and [Formula: see text].


2020 ◽  
Vol 18 (1) ◽  
pp. 1540-1551
Author(s):  
Jung Wook Lim ◽  
Dong Yeol Oh

Abstract Let ({\mathrm{\Gamma}},\le ) be a strictly ordered monoid, and let {{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\} . Let D\subseteq E be an extension of commutative rings with identity, and let I be a nonzero proper ideal of D. Set \begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array} In this paper, we give necessary conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively ordered, and sufficient conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ring D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. As corollaries, we give equivalent conditions for the rings D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}] and D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}] to be Noetherian.


2008 ◽  
Vol 51 (2) ◽  
pp. 291-297 ◽  
Author(s):  
Ernesto Spinelli

AbstractLet KG be a non-commutative strongly Lie solvable group algebra of a group G over a field K of positive characteristic p. In this note we state necessary and sufficient conditions so that the strong Lie derived length of KG assumes its minimal value, namely [log2(p + 1)].


2017 ◽  
Vol 16 (10) ◽  
pp. 1750187 ◽  
Author(s):  
Karima Alaoui Ismaili ◽  
David E. Dobbs ◽  
Najib Mahdou

Recently, Xiang and Ouyang defined a (commutative unital) ring [Formula: see text] to be Nil[Formula: see text]-coherent if each finitely generated ideal of [Formula: see text] that is contained in Nil[Formula: see text] is a finitely presented [Formula: see text]-module. We define and study Nil[Formula: see text]-coherent modules and special Nil[Formula: see text]-coherent modules over any ring. These properties are characterized and their basic properties are established. Any coherent ring is a special Nil[Formula: see text]-coherent ring and any special Nil[Formula: see text]-coherent ring is a Nil[Formula: see text]-coherent ring, but neither of these statements has a valid converse. Any reduced ring is a special Nil[Formula: see text]-coherent ring (regardless of whether it is coherent). Several examples of Nil[Formula: see text]-coherent rings that are not special Nil[Formula: see text]-coherent rings are obtained as byproducts of our study of the transfer of the Nil[Formula: see text]-coherent and the special Nil[Formula: see text]-coherent properties to trivial ring extensions and amalgamated algebras.


2016 ◽  
Vol 59 (3) ◽  
pp. 528-541 ◽  
Author(s):  
Qaiser Jahan

AbstractIn this article, we give necessary and sufficient conditions on a function to be a low-pass filter on a local field K of positive characteristic associated with the scaling function for multiresolution analysis of L2(K). We use probability and martingale methods to provide such a characterization.


2019 ◽  
Vol 13 (06) ◽  
pp. 2050107
Author(s):  
Abdelhaq El Khalfi ◽  
Najib Mahdou

In this paper, we study the possible transfer of the property of being an [Formula: see text]-ring to trivial ring extensions and amalgamated algebras along an ideal. Also, we extend the notion of an almost GCD-domain to the context of arbitrary rings, and we study the possible transfer of this notion to trivial ring extensions and amalgamated algebras along an ideal. Our aim is to provide examples of new classes of commutative rings satisfying the above-mentioned properties.


1975 ◽  
Vol 18 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Jurgen Rompke

A well-known theorem which goes back to R. E. Johnson [4], asserts that if R is a ring then Q(R), its maximal ring of quotients is regular (in the sense of v. Neumann) if and only if the singular ideal of R vanishes. In the theory of semigroups a natural question is therefore the following: Do there exist properties which characterize those semigroups whose maximal semigroups of quotients are regular? Partial answers to this question have been given in [3], [7] and [8]. In this paper we completely solve the commutative case, i.e. we give necessary and sufficient conditions for a commutative semigroup S in order that Q(S), the maximal semigroup of quotients, is regular. These conditions reflect very closely the property of being semiprime, which in the theory of commutative rings characterizes those rings which have a regular ring of quotients.


2019 ◽  
Vol 18 (06) ◽  
pp. 1950104 ◽  
Author(s):  
Najib Ouled Azaiez ◽  
Moutu Abdou Salam Moutui

This paper examines the transfer of the almost valuation property to various constructions of ring extensions such as bi-amalgamations and pairs of rings. Namely, Sec. 2 studies the transfer of this property to bi-amalgamation rings. Our results cover previous known results on duplications and amalgamations, and provide the construction of various new and original examples satisfying this property. Section 3 investigates pairs of integral domains where all intermediate rings are almost valuation rings. As a consequence of our results, we provide necessary and sufficient conditions for a pair (R, T), where R arises from a (T, M, D) construction, to be an almost valuation pair. Furthermore, we study the class of maximal non-almost valuation subrings of their quotient field.


2007 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Ayman Badawi

Suppose that R is a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. It is shown that a nonzero proper ideal I of R is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1,I2,I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown that if I is a 2-absorbing ideal of R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ⋂ P2 where P1,P2 are the only distinct prime ideals of R that are minimal over I. Rings with the property that every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing ideals of valuation domains and Prüfer domains are completely described. It is shown that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of R, then it is shown that an integral domain R is an almost Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R.


Sign in / Sign up

Export Citation Format

Share Document