The algebra of crystallographic groups in dimension two

Author(s):  
Manuel R. F. Moreira

Starting with the two semi-direct products of two copies of the group of integers, a description of all possible semi-direct products of these two groups with finite groups, under a faithful action, is obtained. The results are groups that are isomorphic to 16 crystallographic groups in dimension two. An extra effort gives us a group isomorphic to the 17th crystallographic group. Four of the crystallographic groups are shown to be the only solutions to a natural generalization of the semi-direct product of two copies of the group of integers. Finally, we verify that the two additional groups, that are solution to the generalization of the semi-direct product of two copies of the integers, preserve stability in the sense that their semi-direct products with finite groups under a faithful action give rise only to crystallographic groups, if we disregard some trivial outcomes.

2015 ◽  
Vol 58 (1) ◽  
pp. 105-109 ◽  
Author(s):  
Samaneh Hossein-Zadeh ◽  
Ali Iranmanesh ◽  
Mohammad Ali Hosseinzadeh ◽  
Mark L. Lewis

Abstract.The prime vertex graph, Δ(X), and the common divisor graph, Γ(X), are two graphs that have been deûned on a set of positive integers X. Some properties of these graphs have been studied in the cases where either X is the set of character degrees of a group or X is the set of conjugacy class sizes of a group. In this paper, we gather some results on these graphs arising in the context of direct product of two groups.


Author(s):  
D. R. Taunt

It is well known that a characteristically-simple finite group, that is, a group having no characteristic subgroup other than itself and the identity subgroup, must be either simple or the direct product of a number of isomorphic simple groups. It was suggested to the author by Prof. Hall that finite groups possessing exactly one proper characteristic subgroup would repay attention. We shall call a finite group having a unique proper characteristic subgroup a ‘UCS group’. In the present paper we first give some results on direct products of isomorphic UCS groups, and then we consider in more detail one of the types of UCS groups which can exist, that consisting of groups whose orders are divisible by exactly two distinct primes.


2016 ◽  
Vol 162 (2) ◽  
pp. 191-209
Author(s):  
ÁNGEL DEL RÍO ◽  
PAVEL ZALESSKII

AbstractWe classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$, the group of units of the integral group ring of G, does not contain a direct product of two non-abelian free groups. This list of groups contains all the groups for which $\mathcal{U}({\mathbb Z} G)$ is coherent. This reduces the problem to classify the finite groups G for which $\mathcal{U}({\mathbb Z} G)$ is coherent to decide about the coherency of a finite list of groups of the form SLn(R), with R an order in a finite dimensional rational division algebra.


2006 ◽  
Vol 86 (6) ◽  
pp. 481-489 ◽  
Author(s):  
J. N. S. Bidwell ◽  
M. J. Curran ◽  
D. J. McCaughan

2001 ◽  
Vol 44 (2) ◽  
pp. 379-388 ◽  
Author(s):  
Erhard Aichinger

AbstractLet $N$ be a zero-symmetric near-ring with identity, and let $\sGa$ be a faithful tame $N$-group. We characterize those ideals of $\sGa$ that are the range of some idempotent element of $N$. Using these idempotents, we show that the polynomials on the direct product of the finite $\sOm$-groups $V_1,V_2,\dots,V_n$ can be studied componentwise if and only if $\prod_{i=1}^nV_i$ has no skew congruences.AMS 2000 Mathematics subject classification: Primary 16Y30. Secondary 08A40


10.37236/6999 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Richard H. Hammack ◽  
Wilfried Imrich

It is known that for graphs $A$ and $B$ with odd cycles, the direct product $A\times B$ is vertex-transitive if and only if both $A$ and $B$ are vertex-transitive. But this is not necessarily true if one of $A$ or $B$ is bipartite, and until now there has been no characterization of such vertex-transitive direct products. We prove that if $A$ and $B$ are both bipartite, or both non-bipartite, then $A\times B$ is vertex-transitive if and only if both $A$ and $B$ are vertex-transitive. Also, if $A$ has an odd cycle and $B$ is bipartite, then $A\times B$ is vertex-transitive if and only if both $A\times K_2$ and $B$ are vertex-transitive.


1961 ◽  
Vol 13 ◽  
pp. 192-200 ◽  
Author(s):  
Christine W. Ayoub

In this paper we consider again the group-theoretic configuration studied in (1) and (2). Let G be an additive group (not necessarily abelian), let M be a system of operators for G, and let ϕ be a family of admissible subgroups which form a complete lattice relative to intersection and compositum. Under these circumstances we call G an M — ϕ group. In (1) we studied the normal chains for an M — ϕ group and the relation between certain normal chains. In (2) we considered the possibility of representing an M — ϕ group as the direct sum of certain of its subgroups, and proved that with suitable restrictions on the M — ϕ group the analogue of the following theorem for finite groups holds: A group is the direct product of its Sylow subgroups if and only if it is nilpotent. Here we show that under suitable hypotheses (hypotheses (I), (II), and (III) stated at the beginning of §3) it is possible to generalize to M — ϕ groups many of the Sylow theorems of classical group theorem.


1966 ◽  
Vol 18 ◽  
pp. 1004-1014 ◽  
Author(s):  
Richard A. Alo ◽  
Orrin Frink

A number of different ways of defining topologies in a lattice or partially ordered set in terms of the order relation are known. Three of these methods have proved to be useful and convenient for lattices of special types, namely the ideal topology, the interval topology, and the new interval topology of Garrett Birkhoff. In another paper (2) we have shown that these three topologies are equivalent for chains (totally ordered sets), where they reduce to the usual intrinsic topology of the chain.Since many important lattices are either direct products of chains or sublattices of such products, it is natural to ask what relationships exist between the various order topologies of a direct product of lattices and those of the lattices themselves.


1960 ◽  
Vol 12 ◽  
pp. 73-100 ◽  
Author(s):  
Daniel Gorenstein

In the course of investigating the structure of finite groups which have a representation in the form ABA, for suitable subgroups A and B, we have been forced to study groups G which admit an automorphism ϕ such that every element of G lies in at least one of the orbits under ϕ of the elements g, gϕr(g), gϕrϕ(g)ϕ2r(g), gϕr(g)ϕr2r(g)ϕ3r(g), etc., where g is a fixed element of G and r is a fixed integer.In a previous paper on ABA-groups written jointly with I. N. Herstein (4), we have treated the special case r = 0 (in which case every element of G can be expressed in the form ϕi(gj)), and have shown that if the orders of ϕ and g are relatively prime, then G is either Abelian or the direct product of an Abelian group of odd order and the quaternion group of order 8.


1983 ◽  
Vol 26 (2) ◽  
pp. 233-240 ◽  
Author(s):  
Paul Milnes

AbstractA classical result of I. Glicksberg and K. de Leeuw asserts that the almost periodic compactification of a direct product S × T of abelian semigroups with identity is (canonically isomorphic to) the direct product of the almost periodic compactiflcations of S and T. Some efforts have been made to generalize this result and recently H. D. Junghenn and B. T. Lerner have proved a theorem giving necessary and sufficient conditions for an F-compactification of a semidirect product S⊗σT to be a semidirect product of compactiflcations of S and T. A different such theorem is presented here along with a number of corollaries and examples which illustrate its scope and limitations. Some behaviour that can occur for semidirect products, but not for direct products, is exposed


Sign in / Sign up

Export Citation Format

Share Document