MODELING OF ILIAC ARTERY ANEURYSM USING FLUID–STRUCTURE INTERACTION

2015 ◽  
Vol 15 (01) ◽  
pp. 1550041 ◽  
Author(s):  
HATEF SABOONI ◽  
KAMRAN HASSANI ◽  
HAMIDREZA GHASEMI BAHRASEMAN

The aneurysm of iliac artery is a rare entity and there are few computational models that have studied the disease. In this study, we have presented the flow patterns in the aneurysmal artery using Fluid–structure interaction method. The blood was assumed Newotonian, pulsatile, laminar, incompressible, and homogenous. The geometry of the model was made based on CT images of clinical cases. Using the computational method, we have obtained the velocity and pressure contours, shear rates and vortices for the healthy and aneurysmal artery. The results show that a pressure maximum was found at the midpoint of the dilation. The vortices are formed in the aneurysmal area26 and shear rates do not change much. However, the rate increased in the neck of aneurysms. Furthermore, the aneurysm with bigger dilation tend to rupture due to more shear rates in the neck and the velocity at peak systole decreases in the aneurysmal area due to increase of the artery diameter. We have compared our results with some available relevant clinical data in discussion section.

2014 ◽  
Vol 553 ◽  
pp. 275-280 ◽  
Author(s):  
Mo Yin Zhao ◽  
Tracie J. Barber ◽  
Peter A. Cistulli ◽  
Kate Sutherland ◽  
Gary Rosengarten

Obstructive Sleep Apnea (OSA) is a common sleep disorder characterized by repetitive collapse of the upper airway (UA) during sleep. Treatment options for OSA include mandibular advancement splints (MAS), worn intra-orally to protrude the lower jaw to stabilize the airway. However not all patients will respond to MAS therapy and individual effects on the upper airway are not well understood. Simulations of airway behavior represent a non-invasive means to understand this disorder and treatment responses in individual patients. The aims of this study was to perform analysis of upper airway (UA) occlusion and flow dynamics in OSA using the fluid structure interaction (FSI) method, and secondly to observe changes associated with MAS usage. Magnetic resonance imaging (MRI) scans were obtained with and without mandibular advance splint (MAS) treatment in a patient known to be a treatment responder. Computational models of the anatomically correct UA geometry were reconstructed for both pre-and post-treatment (MAS) conditions. By comparing the simulation results, the treatment success of MAS was demonstrated by smaller UA structure deformation (maximum 2mm) post-treatment relative to the pre-treatment fully collapsed (maximum 6mm) counterpart. The UA collapse was located at the oropharynx and the low oropharyngeal pressure (-51 Pa to-39 Pa) was induced by the velopharyngeal jet flow (maximum 10 m/s). The results support previous OSA computational fluid dynamics (CFD) studies by indicating similar UA pressure drop and maximum velocity values. These findings lay a firm platform for the application of computational models for the study of the biomechanical properties of the upper airway in the pathogenesis and treatment of OSA.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1162 ◽  
Author(s):  
Cristiano Fragassa ◽  
Marko Topalovic ◽  
Ana Pavlovic ◽  
Snezana Vulovic

Smoothed particle hydrodynamics (SPH) and the finite element method (FEM) are often combined with the scope to model the interaction between structures and the surrounding fluids (FSI). There is the case, for instance, of aircrafts crashing on water or speedboats slamming into waves. Due to the high computational complexity, the influence of air is often neglected, limiting the analysis to the interaction between structure and water. On the contrary, this work aims to specifically investigate the effect of air when merged inside the fluid–structure interaction (FSI) computational models. Measures from experiments were used as a basis to validate estimations comparing results from models that include or exclude the presence of air. Outcomes generally showed a great correlation between simulation and experiments, with marginal differences in terms of accelerations, especially during the first phase of impact and considering the presence of air in the model.


2016 ◽  
Vol 43 (1) ◽  
pp. 60-72 ◽  
Author(s):  
M. Simão ◽  
J. Mora-Rodriguez ◽  
H.M. Ramos

Fluid–structure interaction is analyzed using 1D and 3D computational models and results from an experimental facility, where transient events are induced. The water-hammer phenomenon is modelled by a 1D model based on the method of characteristics and the COMSOL Multiphysics 4.3b, which uses finite element method to study the fluid structural interaction involved in a long pressurized pipe system with curves, expansion joints, anchor and support blocks and different rheological behaviour of the pipe material. Comparisons are made between the experimental data and the two numerical models, where the type of response of each model was enhanced, as well as the ability of each model to simulate real conditions.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 185
Author(s):  
Milan Toma ◽  
Rosalyn Chan-Akeley ◽  
Jonathan Arias ◽  
Gregory D. Kurgansky ◽  
Wenbin Mao

Due to the inherent complexity of biological applications that more often than not include fluids and structures interacting together, the development of computational fluid–structure interaction models is necessary to achieve a quantitative understanding of their structure and function in both health and disease. The functions of biological structures usually include their interactions with the surrounding fluids. Hence, we contend that the use of fluid–structure interaction models in computational studies of biological systems is practical, if not necessary. The ultimate goal is to develop computational models to predict human biological processes. These models are meant to guide us through the multitude of possible diseases affecting our organs and lead to more effective methods for disease diagnosis, risk stratification, and therapy. This review paper summarizes computational models that use smoothed-particle hydrodynamics to simulate the fluid–structure interactions in complex biological systems.


2018 ◽  
Vol 24 (1) ◽  
pp. 86-97 ◽  
Author(s):  
A. Cirello ◽  
F. Cucinotta ◽  
T. Ingrassia ◽  
V. Nigrelli ◽  
F. Sfravara

Author(s):  
Thomas G. Shepard ◽  
Kyle Schneider ◽  
Sarah Baxter ◽  
William Schwartz

Abstract Validation of numerical simulations is a key step in gaining confidence in the fidelity of computational models for a given application. These simulations take on additional complexity in fluid structure interactions when the body being studied experiences flow-induced deformation. In this study, experiments are conducted on a cantilevered aluminum plate mounted in a wind tunnel. Experimentally, deflections are measured using Digital Image Correlation and axial bending strains are measured using strain gages and. These values are compared to a coupled fluid-structure interaction simulation, which co-simulated the structural (Lagrangian FEA) and fluid (Navier-Stokes CFD) computational methods. Within the simulations, FEA parameters including mesh size, mapping method, and mesh type were varied; CFD parameters that were varied include turbulence theory, mesh sizing, inflation layer, mapping method, and Courant Number. Values were varied to study their effects on the simulation solution, as well as to ensure mesh independence of the solution relative to both simulation domains. Experiments were conducted on an Aluminum (6061-T6) plate measuring 152.4 × 50.8 × 0.61 mm. The plate was positioned in the wind tunnel at two different angles relative to the oncoming flow and Reynolds numbers of 98,000–247,000 were considered. The numerical simulation demonstrates agreement with DIC displacements and good agreement with measured strains with deflections up to ∼ 11 mm. Future steps are discussed.


2013 ◽  
Vol 385-386 ◽  
pp. 146-149
Author(s):  
Min Luo ◽  
Ting Ting Xu ◽  
Ting Ting Zhao ◽  
Wen Xin Zhao ◽  
Ju Bao Liu

With the development of drilling technology, rotary drillstring not only produces random multi-directional collisions with the inner wall of pipe, also couples with the inner and outer annular fluids. This results in a complex system of nonlinear fluid-structure interaction. In the paper, structure and mode of operation about rotary drillstring are considered, the equations of the structure dynamics, fluid equation of continuity and momentum equation are coupled. The three-dimensional numerical model and computational method is established about the fluidstructure interaction dynamic analysis of rotary drillstring. Take the rotary drillstring and inner and outer fluids as a research object, dynamic analysis of the rotary drillstring is finished, considering the fluid-structure coupled characteristics and compare the air medium, the results show the effect of fluidstructure interaction. It can provide the feasible method for the study of the string in the oil drilling and production engineering and conduct the development of drillstring dynamics in horizontal well drilling engineering.


Author(s):  
Suguru Miyauchi ◽  
Takeshi Omori ◽  
Shintaro Takeuchi ◽  
Takeo Kajishima

For the understanding of the phonation mechanism and for the design of an artificial vocal cord, we developed a computational method for the fluid-structure interaction, including the elastic walls and membranes. A robust and efficient method is required to deal with large deformation of biological materials and high frequency vibration. To this end, we apply an immersed boundary method. The flow through a two-dimensional channel including a pair of flexible structures, which is a simplification of a vocal cord, is simulated. The elastic solid is modeled by the St. Venant-Kirchhoff constitutive equation and its motion is simulated by a finite-element method, where the contact of the vocal cord is taken into account by a Lagrange multiplier method. The incompressible fluid flow is computed by a finite-difference method. Then the immersed-boundary method of a body-force type developed by the authors is successfully applied for the fluid-structure interaction. In the present results, the deformation of the structure and the frequency of the pulsating flow are reasonably reproduced. The obtained frequency is within the measured range of the data for a human vocal cord. Also, two velocity peaks are observed when the vocal cord is in the opening and closing phases in each period of the vocal cord vibration, and the velocity of the closing phase is larger than that of the opening phase.


2019 ◽  
Author(s):  
Jae Ho Lee ◽  
Alex D. Rygg ◽  
Ebrahim M. Kolahdouz ◽  
Simone Rossi ◽  
Stephen M. Retta ◽  
...  

Computer modeling and simulation (CM&S) is a powerful tool for assessing the performance of medical devices such as bioprosthetic heart valves (BHVs) that promises to accelerate device design and regulation. This study describes work to develop dynamic computer models of BHVs in the aortic test section of an experimental pulse duplicator platform that is used in academia, industry, and regulatory agencies to assess BHV performance. These computational models are based on a hyperelastic finite element extension of the immersed boundary method for fluid--structure interaction (FSI). We focus on porcine tissue and bovine pericardial BHVs, which are commonly used in surgical valve replacement. We compare our numerical simulations to experimental data from two similar pulse duplicators, including a commercial ViVitro system and a custom platform related to the ViVitro pulse duplicator. Excellent agreement is demonstrated between the computational and experimental results for bulk flow rates, pressures, valve open areas, and the timing of valve opening and closure in conditions commonly used to assess BHV performance. In addition, reasonable agreement is demonstrated for quantitative measures of leaflet kinematics under these same conditions. This work represents a step towards the experimental validation of this FSI modeling platform for evaluating BHVs.


Sign in / Sign up

Export Citation Format

Share Document