ARRHYTHMIA DIAGNOSIS FROM ECG SIGNAL ANALYSIS USING STATISTICAL FEATURES AND NOVEL CLASSIFICATION METHOD

Author(s):  
SAURAV MANDAL ◽  
NABANITA SINHA

This study aims to present an efficient model for autodetection of cardiac arrhythmia by the diagnosis of self-affinity and identification of governing processes of a number of Electrocardiogram (ECG) signals taken from MIT-BIH database. In this work, the proposed model includes statistical methods to find the diagnosis pattern for detecting cardiac abnormalities which is useful for the computer aided system for arrhythmia detection. First, the Rescale Range (R/S) analysis has been employed for ECG signals to understand the scaling property of ECG signals. The value of Hurst exponent identifies the presence of abnormality in ECG signals taken for consideration with 92.58% accuracy. In this study, Higuchi method which deals with unifractality or monofractality of signals has been applied and it is found that unifractality is sufficient to detect arrhythmia with 91.61% accuracy. The Multifractal Detrended Fluctuation Analysis (MFDFA) has been used over the present signals to identify and confirm the multifractality. The nature of multifractality is different for arrhythmia patients and normal heart condition. The multifractal analysis is useful to detect abnormalities with 93.75% accuracy. Finally, the autocorrelation analysis has been used to identify the prevalent governing process in the present arrhythmic ECG signals and study confirms that all the signals are governed by stationary autoregressive methods of certain orders. In order to increase the overall efficiency, this present model deals with analyzing all the statistical features extracted from different statistical techniques for a large number of ECG signals of normal and abnormal heart condition. Finally, the result of present analysis altogether possibly indicates that the proposed model is efficient to detect cardiac arrhythmia with 99.3% accuracy.

Author(s):  
Mohebbanaaz Mohebbanaaz ◽  
Y. Padma Sai ◽  
L. V. Rajani Kumari

<span>Deep learning (DL) <span>has become a topic of study in various applications, including healthcare. Detection of abnormalities in an electrocardiogram (ECG) plays a significant role in patient monitoring. It is noted that a deep neural network when trained on huge data, can easily detect cardiac arrhythmia. This may help cardiologists to start treatment as early as possible. This paper proposes a new deep learning model adapting the concept of transfer learning to extract deep-CNN features and facilitates automated classification of electrocardiogram (ECG) into sixteen types of ECG beats using an optimized support vector machine (SVM). The proposed strategy begins with gathering ECG datasets, removal of noise from ECG signals, and extracting beats from denoised ECG signals. Feature extraction is done using ResNet18 via concept of transfer learning. These extracted features are classified using optimized SVM. These methods are evaluated and tested on the MIT-BIH arrhythmia database. Our proposed model is effective compared to all State of Art Techniques with an accuracy of 98.70%.</span></span>


2021 ◽  
Vol 38 (6) ◽  
pp. 1737-1745
Author(s):  
Amine Ben Slama ◽  
Hanene Sahli ◽  
Ramzi Maalmi ◽  
Hedi Trabelsi

In healthcare, diagnostic tools of cardiac diseases are commonly known by the electrocardiogram (ECG) analysis. Atypical electrical activity can produce a cardiac arrhythmia. Various difficulties can be imposed to clinicians e.g., myocardial infarction arrhythmia via the non-stationarity and irregularity heart beat signals. Through the assistance of computer-aided diagnosis methods, timely specification of arrhythmia diseases reduces the mortality rate of affected patients. In this study, a 1 Lead QRS complex -layer deep convolutional neural network is proposed for the recognition of arrhythmia datasets. By the use of this CNN model, we planned a complete structure of the classification architecture after a pre-processing stage counting the denoising and QRS complex signals detection procedure. The chief benefit of the new proposed methodology is that the automatically training the QRS complexes without requiring all original extracted ECG signals. The proposed model was trained on the increased ECG database and separated into five classes. Experimental results display that the established CNN method has improved performance when compared to the state-of-the-art studies.


Fractals ◽  
2016 ◽  
Vol 24 (04) ◽  
pp. 1650052 ◽  
Author(s):  
GE YANG ◽  
JUN WANG

A random agent-based financial model is developed and investigated by the finite-range multitype contact dynamic system, in an attempt to reproduce and study the dynamics of financial markets. And an analysis method of detecting duration and intensity relationship in volatility series is introduced, called the volatility duration analysis. Then the auto-correlation analysis suggests that there exists evident volatility clustering feature in absolute volatility durations for the simulation data and the real data. Besides, the Lempel–Ziv complexity analysis is applied to study the complexity of the returns, the corresponding absolute returns and the volatility duration returns, which can reflect the fluctuation behaviors, the volatility behaviors and the volatility duration behaviors. At last, the multifractal phenomena of volatility durations of returns are comparatively studied for Shanghai Composite Index and the proposed model by multifractal detrended fluctuation analysis.


Author(s):  
Javier Gómez-Gómez ◽  
Rafael Carmona-Cabezas ◽  
Ana B. Ariza-Villaverde ◽  
Eduardo Gutiérrez de Ravé ◽  
Francisco José Jiménez-Hornero

Author(s):  
Du Wenliao ◽  
Guo Zhiqiang ◽  
Gong Xiaoyun ◽  
Xie Guizhong ◽  
Wang Liangwen ◽  
...  

A novel multifractal detrended fluctuation analysis based on improved empirical mode decomposition for the non-linear and non-stationary vibration signal of machinery is proposed. As the intrinsic mode functions selection and Kolmogorov–Smirnov test are utilized in the detrending procedure, the present approach is quite available for contaminated data sets. The intrinsic mode functions selection is employed to deal with the undesired intrinsic mode functions named pseudocomponents, and the two-sample Kolmogorov–Smirnov test works on each intrinsic mode function and Gaussian noise to detect the noise-like intrinsic mode functions. The proposed method is adaptive to the signal and weakens the effect of noise, which makes this approach work well for vibration signals collected from poor working conditions. We assess the performance of the proposed procedure through the classic multiplicative cascading process. For the pure simulation signal, our results agree with the theoretical results, and for the contaminated time series, the proposed method outperforms the traditional multifractal detrended fluctuation analysis methods. In addition, we analyze the vibration signals of rolling bearing with different fault types, and the presence of multifractality is confirmed.


Sign in / Sign up

Export Citation Format

Share Document