Study of the Ambient Vibration Energy Harvesting Based on Piezoelectric Effect

2015 ◽  
Vol 14 (01n02) ◽  
pp. 1460017
Author(s):  
Hongyu Si ◽  
Jinlu Dong ◽  
Lei Chen ◽  
Laizhi Sun ◽  
Xiaodong Zhang ◽  
...  

The resonance between piezoelectric vibrator and the vibration source is the key to maximize the ambient vibration energy harvesting by using piezoelectric generator. In this paper, the factors that influence the output power of a single piezoelectric vibrator are analyzed. The effect of geometry size (length, thickness, width of piezoelectric chip and thickness of metal shim) of a single cantilever piezoelectric vibrator to the output power is analyzed and simulated with the help of MATLAB (matrix laboratory). The curves that output power varies with geometry size are obtained when the displacement and load at the free end are constant. Then the paper points out multi-resonant frequency piezoelectric power generation, including cantilever multi-resonant frequency piezoelectric power generation and disc type multi-resonant frequency piezoelectric generation. Multi-resonant frequency of cantilever piezoelectric power generation can be realized by placing different quality mass at the free end, while disc type multi-resonant frequency piezoelectric generation can be realized through series and parallel connection of piezoelectric vibrator.

Author(s):  
Alok Ranjan Biswal ◽  
Tarapada Roy ◽  
Rabindra Kumar Behera

The current article deals with finite element (FE)- and genetic algorithm (GA)-based vibration energy harvesting from a tapered piezolaminated cantilever beam. Euler–Bernoulli beam theory is used for modeling the various cross sections of the beam. The governing equation of motion is derived by using the Hamilton's principle. Two noded beam elements with two degrees of freedom at each node have been considered in order to solve the governing equation. The effect of structural damping has also been incorporated in the FE model. An electric interface is assumed to be connected to measure the voltage and output power in piezoelectric patch due to charge accumulation caused by vibration. The effects of taper (both in the width and height directions) on output power for three cases of shape variation (such as linear, parabolic and cubic) along with frequency and voltage are analyzed. A real-coded genetic algorithm-based constrained (such as ultimate stress and breakdown voltage) optimization technique has been formulated to determine the best possible design variables for optimal harvesting power. A comparative study is also carried out for output power by varying the cross section of the beam, and genetic algorithm-based optimization scheme shows the better results than that of available conventional trial and error methods.


2019 ◽  
Vol 86 (s1) ◽  
pp. 57-61 ◽  
Author(s):  
Sonia Bradai ◽  
Slim Naifar ◽  
Olfa Kanoun

AbstractHarvesting energy from ambient vibration sources is challenging due to its low characteristic amplitude and frequencies. In this purpose, this work presents a compact hybrid vibration converter based on electromagnetic and magnetoelectric principles working for a frequency bandwidth and under real vibration source properties. The combination of especially these two principles is mainly due to the fact that both converters can use the same changes of the magnetic field for energy harvesting. The converter was investigated using finite element analysis and validated experimentally. Results have shown that a frequency bandwidth up to 12 Hz with a characteristic resonant frequency at 24 Hz and a power density of 0.11mW/cm3 can be reached.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices, and wireless sensors due to high power density, easy integration, simple configuration, and other outstanding features. Among piezoelectric vibration energy harvesting structures, the cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model is proposed, which focuses on the multi-directional vibration collection. To verify the output performance of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit is adopted as a collection system. It can achieve a maximum voltage of 4.5 V which is responded to the harmonic vibrating input of 1 N force and 1 m/s2 in a single vibrating direction. Moreover, the power density is 2.596 W/cm3 with a 100 kΩ resistor. It is almost four times better than the output of unidirectional cantilever beam with similar resonant frequency and volume. According to the more functionality in the applications, VS-RTH energy harvester can be used in general vibration acquisition of machines and vehicles. Except for electricity storage, the harvester can potentially employ as a sensor to monitor the diversified physical signals for smooth operation and emergence reports. Looking forward, the VS-RTH harvester renders an effective approach toward decomposing the vibration directions in the environment for further complicating vibration applications.


2011 ◽  
Vol 25 ◽  
pp. 721-724 ◽  
Author(s):  
F. Stoppel ◽  
C. Schröder ◽  
F. Senger ◽  
B. Wagner ◽  
W. Benecke

2021 ◽  
Vol 8 ◽  
Author(s):  
Huaxia Deng ◽  
Zizheng Zhao ◽  
Chong Jiao ◽  
Jingchang Ye ◽  
Shiyu Zhao ◽  
...  

There are a lot of vibrational energies, which are low frequency, multidirectional, and broadband, in the nature. This creates difficulties for devices that aim at harvesting vibration energy. Here, we present a liquid-metal-based freestanding triboelectric generator (LM-FTG) for vibration energy harvesting. In this device, the fluidity of liquid is used to increase sensitivity to vibration for better low-frequency response and multidirectional vibration energy harvesting capability. The freestanding power generation mode is able to increase power generation stability. Experiments show that the bandwidth of LM-FTG can almost cover the entire sweep frequency range, and a 10 μF capacitor can be charged to 6.46 V at 7.5 Hz in 60 s by LM-FTG. In particular, 100 LEDs are illuminated in the low-frequency environmental experiment successfully. The proposed LM-FTG can work in low frequency with large working bandwidth, which provides an effective method for energy harvesting of low-frequency and multidirectional vibrations.


Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices and wireless sensors due to high power density, easy integration, simple configuration and other outstanding features. Among piezoelectric vibration energy harvesting structures, cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model of mesoscale piezoelectric energy harvester is proposed, which focuses on the multi-directional vibration collection and low resonant frequency. To verify the output performances of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit with high power collection rate is adopted as collection system. This harvester is beneficial to the further application of devices working with continuous vibrations and low power requirements.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 39
Author(s):  
Nevin Augustine ◽  
Hemanth Kotturu ◽  
S Meenatchi Sundaram ◽  
G S. Vijay

Research on harvesting energy from natural resources is more focused as it can make microelectronic devices self-powered. MEMS based vibration energy harvesters are gaining its popularity in recent days to extract energy from vibrating objects and to use that energy to power the sensors. A solution for the major constrain for vibration energy harvesting in micro scale has been addressed in this paper. Cantilever beams coated with piezoelectric materials which are optimized to resonate at the source vibration frequency are used in most of the traditional vibration energy harvesting applications. In micro scale such structures have very high natural frequency compared to the ambient vibration frequencies due to which frequency matching is a constrain. Tip mass at the end of the cantilever reduces the resonant frequency to a great extent but adds to complexity and fabrication difficulties. Here, we propose a spiral geometry for micro harvester structures with low fundamental frequencies compared to traditional cantilevers. The spiral geometry is proposed, simulated and analyzed, to show that such a structure would be able to vibrate near resonance at micro scale. The analysis consists of Modal analysis, Mises stress analysis and displacement analysis in COMSOL Multiphysics. The result shows that the frequency has been reduced by a factor of 300 when compared to normal cantilever in the same volume. The work provides guideline for vibration energy harvesting structure design for an improved performance.  


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 907
Author(s):  
Xiaodong Yan ◽  
Mupeng Zheng ◽  
Mankang Zhu ◽  
Yudong Hou

The question as to which piezoelectric composition is favorable for energy harvesting has been addressed in the past few years. However, discussion on this topic continues. In this work, an answer is provided through a feasible method which can be used in selecting piezoelectric material. The energy harvesting behavior of hard (P4 and P8) and soft (P5 and P5H) lead zirconate titanate (PZT) ceramics was investigated. The results show that the maximum piezoelectric voltage coefficient g33 and transduction coefficient d33 × g33 were obtained in P5 ceramic. Meanwhile, the power generation characteristics at low frequencies were compared by the vibration energy harvester with a cantilever beam structure. The results indicate that the energy harvester fabricated by the P5 ceramic with the maximum d33 × g33 values also demonstrated the best power generation characteristics. The results unambiguously demonstrate that the power density and energy conversion efficiency of the energy harvesting devices are dominated by the d33 × g33 value of the piezoelectric materials.


2010 ◽  
Vol 26-28 ◽  
pp. 1088-1092 ◽  
Author(s):  
Xiao Zhen Du ◽  
Hong Yu

This paper presents a theory model based on the vibration and piezoelectric coupling mechanism. The aim is to discuss the optimization parameters for the design of a piezoelectric battery. The simulation results show the dependence of output power on external load and the device structure. High output power can be obtained by optimizing the piezoelectric battery structure parameters. Theory analysis and indicate that a piezoelectric battery for ambient vibration energy harvesting is a promising electric power source for wireless sensors nodes.


Sign in / Sign up

Export Citation Format

Share Document