Theoretical elucidation of the energy conversion rate in organic photovoltaic cells of the fullerene nanostructure derivatives. A density functional theory study

2020 ◽  
Vol 19 (07) ◽  
pp. 2050025
Author(s):  
Nadjet Deddouche ◽  
Hafida Chemouri

A comparative theoretical study of the kinetics of the Diels–Alder (DA) reaction between empty fullerene (C[Formula: see text]) and lithium ion encapsulated fullerene ([Formula: see text]) with 1,3 cyclohexadiene (C[Formula: see text]H[Formula: see text]) was carried out. This reaction takes place in a photovoltaic cell. The effect of the encapsulated [Formula: see text] ion on the conversion rate of solar energy into electricity has been highlighted through calculations based on the density functional theory (DFT). In addition, a static study using the global conceptual DFT indices, as part of the demonstration of the significant electrophilic power of the fullerene nanostructure, was carried out to show the effect of encapsulating the [Formula: see text] ion in this nanoparticle on the electrophilic power of Li[Formula: see text]@C[Formula: see text] and therefore on the acceleration of the reaction. The relationship between the HOMOdonor–LUMOacceptor energy difference and the DA reaction acceleration, and therefore the acceleration of light conversion (a rapid conversion implies a small gap), has been thoroughly examined. Moreover, a mechanistic study of the kinetics of the DA reaction of the fullerene involved in an organic photovoltaic cell has been carried out. In this section, a concerted synchronous mechanism with no effect of [Formula: see text] encapsulation on the synchronicity of the reaction was observed. Finally, it was revealed that Li[Formula: see text]@C[Formula: see text] reacted approximately 2466 times faster than C[Formula: see text]. Moreover, the experimental results were found in good agreement with the computer calculations.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2560
Author(s):  
Jianwen Meng ◽  
Yong Pan ◽  
Fan Yang ◽  
Yanjun Wang ◽  
Zhongyu Zheng ◽  
...  

The thermal stability and decomposition kinetics analysis of 1-alkyl-2,3-dimethylimidazole nitrate ionic liquids with different alkyl chains (ethyl, butyl, hexyl, octyl and decyl) were investigated by using isothermal and nonisothermal thermogravimetric analysis combined with thermoanalytical kinetics calculations (Kissinger, Friedman and Flynn-Wall-Ozawa) and density functional theory (DFT) calculations. Isothermal experiments were performed in a nitrogen atmosphere at 240, 250, 260 and 270 °C. In addition, the nonisothermal experiments were carried out in nitrogen and air atmospheres from 30 to 600 °C with heating rates of 5, 10, 15, 20 and 25 °C/min. The results of two heating modes, three activation energy calculations and density functional theory calculations consistently showed that the thermal stability of 1-alkyl-2,3-dimethylimidazolium nitrate ionic liquids decreases with the increasing length of the alkyl chain of the substituent on the cation, and then the thermal hazard increases. This study could provide some guidance for the safety design and use of imidazolium nitrate ionic liquids for engineering.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Qasemnazhand ◽  
Farhad Khoeini ◽  
Farah Marsusi

AbstractIn this study, based on density functional theory, we propose a new branch of pseudo-fullerenes which contain triple bonds with sp hybridization. We call these new nanostructures fullerynes, according to IUPAC. We present four samples with the chemical formula of C4nHn, and the structures derived from fulleranes. We compare the structural and electronic properties of these structures with those of two common fullerenes and fulleranes systems. The calculated electron affinities of the sampled fullerynes are negative, and much smaller than those of fullerenes, so they should be chemically more stable than fullerenes. Although fulleranes also exhibit higher chemical stability than fullerynes, but pentagon or hexagon of the fullerane structures cannot pass ions and molecules. Applications of fullerynes can be included in the storage of ions and gases at the nanoscale. On the other hand, they can also be used as cathode/anode electrodes in lithium-ion batteries.


2020 ◽  
Vol 22 (6) ◽  
pp. 3304-3313
Author(s):  
Muhammad Isa Khan ◽  
Abdul Majid ◽  
Naveed Ashraf ◽  
Irslan Ullah

In order to search for a new anode material for lithium-ion batteries (LIBs), a borophene/boron nitride (B/BN) interface was investigated in detail using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document