MECHANICAL WATCH SIGNATURE ANALYSIS BASED ON WAVELET DECOMPOSITION

Author(s):  
QINGBO HE ◽  
RUXU DU

The acoustic signal of mechanical watch is a distinct multi-component signal. It contains many frequency components corresponding to specific escapement motion sources with a very wide frequency range. Therefore, it is challenging for signature analysis of mechanical watch by the acoustic signal. This paper studies the time-frequency signatures of the mechanical watch based on wavelet decomposition. Two methods are proposed to improve the frequency resolution of traditional wavelet techniques by combining other beneficial techniques in the sense of decomposing specific mono- or independent components. The empirical mode decomposition (EMD) is presented to advance the wavelet packet decomposition (WPD) to decompose the mono-component signals. And the blind source separation (BSS) makes the redundancy of continuous wavelet transform (CWT) further gain good frequency resolution in the independent meaning. The decomposed signals by the two methods reveal the insight of mechanical watch movement and can contribute much simpler and clearer time-frequency signatures. Experimental results indicated the effectiveness of the two methods and the value of the time-frequency signatures in analyzing and diagnosing mechanical watch movements.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Byuckjin Lee ◽  
Byeongnam Kim ◽  
Sun K. Yoo

AbstractObjectivesThe phase characteristics of the representative frequency components of the Electroencephalogram (EEG) can be a means of understanding the brain functions of human senses and perception. In this paper, we found out that visual evoked potential (VEP) is composed of the dominant multi-band component signals of the EEG through the experiment.MethodsWe analyzed the characteristics of VEP based on the theory that brain evoked potentials can be decomposed into phase synchronized signals. In order to decompose the EEG signal into across each frequency component signals, we extracted the signals in the time-frequency domain with high resolution using the empirical mode decomposition method. We applied the Hilbert transform (HT) to extract the signal and synthesized it into a frequency band signal representing VEP components. VEP could be decomposed into phase synchronized δ, θ, α, and β frequency signals. We investigated the features of visual brain function by analyzing the amplitude and latency of the decomposed signals in phase synchronized with the VEP and the phase-locking value (PLV) between brain regions.ResultsIn response to visual stimulation, PLV values were higher in the posterior lobe region than in the anterior lobe. In the occipital region, the PLV value of theta band was observed high.ConclusionsThe VEP signals decomposed into constituent frequency components through phase analysis can be used as a method of analyzing the relationship between activated signals and brain function related to visual stimuli.


2018 ◽  
Vol 51 (5-6) ◽  
pp. 138-149 ◽  
Author(s):  
Hüseyin Göksu

Estimation of vehicle speed by analysis of drive-by noise is a known technique. The methods used in this kind of practice generally estimate the velocity of the vehicle with respect to the microphone(s), so they rely on the relative motion of the vehicle to the microphone(s). There are also other methods that do not rely on this technique. For example, recent research has shown that there is a statistical correlation between vehicle speed and drive-by noise emissions spectra. This does not rely on the relative motion of the vehicle with respect to the microphone(s) so it inspires us to consider the possibility of predicting velocity of the vehicle using an on-board microphone. This has the potential for the development of a new kind of speed sensor. For this purpose we record sound signal from a vehicle under speed variation using an on-board microphone. Sound emissions from a vehicle are very complex, which is from the engine, the exhaust, the air conditioner, other mechanical parts, tires, and air resistance. These emissions carry both stationary and non-stationary information. We propose to make the analysis by wavelet packet analysis, rather than traditional time or frequency domain methods. Wavelet packet analysis, by providing arbitrary time-frequency resolution, enables analyzing signals of stationary and non-stationary nature. It has better time representation than Fourier analysis and better high-frequency resolution than Wavelet analysis. Subsignals from the wavelet packet analysis are analyzed further by Norm Entropy, Log Energy Entropy, and Energy. These features are evaluated by feeding them into a multilayer perceptron. Norm entropy achieves the best prediction with 97.89% average accuracy with 1.11 km/h mean absolute error which corresponds to 2.11% relative error. Time sensitivity is ±0.453 s and is open to improvement by varying the window width. The results indicate that, with further tests at other speed ranges, with other vehicles and under dynamic conditions, this method can be extended to the design of a new kind of vehicle speed sensor.


Author(s):  
Mykola Sysyn ◽  
Olga Nabochenko ◽  
Franziska Kluge ◽  
Vitalii Kovalchuk ◽  
Andriy Pentsak

Track-side inertial measurements on common crossings are the object of the present study. The paper deals with the problem of measurement's interpretation for the estimation of the crossing structural health. The problem is manifested by the weak relation of measured acceleration components and impact lateral distribution to the lifecycle of common crossing rolling surface. The popular signal processing and machine learning methods are explored to solve the problem. The Hilbert-Huang Transform (HHT) method is used to extract the time-frequency features of acceleration components. The method is based on Ensemble Empirical Mode Decomposition (EEMD) that is advantageous to the conventional spectral analysis methods with higher frequency resolution and managing nonstationary nonlinear signals. Linear regression and Gaussian Process Regression are used to fuse the extracted features in one structural health (SH) indicator and study its relation to the crossing lifetime. The results have shown the significant relation of the derived with GPR indicator to the lifetime.


2020 ◽  
Vol 51 (3) ◽  
pp. 52-59 ◽  
Author(s):  
Xiao-bin Fan ◽  
Bin Zhao ◽  
Bing-xu Fan

In order to overcome the shortcomings (such as the time–frequency localization and the nonstationary signal analysis ability) of the Fourier transform, time–frequency analysis has been carried out by wavelet packet decomposition and reconstruction according to the actual nonstationary vibration signal from a large equipment located in a large Steel Corporation in this article. The effect of wavelet decomposition on signal denoising and the selection of high-frequency weight coefficients for each layer on signal denoising were analyzed. The nonlinear prediction of the chaotic time series was made by global method, local method, weighted first-order local method, and maximum Lyapunov exponent prediction method correspondingly. It was found the multi-step prediction method is better than other prediction methods.


2018 ◽  
Vol 51 (3-4) ◽  
pp. 104-112
Author(s):  
Hüseyin Göksu

Fluid, when running through pipes, makes a complex sound emission whose parameters change nonlinearly with respect to flow speed. Especially, in household pipe systems, there may be spraying effects and resonance effects which make the emission more complex. We present a novel approach for predicting flow speed based on wavelet packet analysis of sound emissions rather than traditional time and frequency domain methods. Wavelet packet analysis, by providing arbitrary time–frequency resolution, enables analyzing signals of stationary and non-stationary nature. It has better time representation than Fourier analysis and better high-frequency resolution than wavelet analysis. Wavelet packet analysis subimages are further analyzed to obtain feature vectors of norm entropy. These feature vectors are fed into a multilayer perceptron for prediction. Prediction accuracy of 98.62%, with 3.99E−04 L/s mean absolute error and its corresponding 1.85% relative error is achieved. Time sensitivity is ±0.453 s and is open to improvement by varying window width. The result indicates that the proposed method is a good candidate for flow measurement by acoustic analysis.


2011 ◽  
Vol 55-57 ◽  
pp. 1593-1598
Author(s):  
Xiao Xuan Qi ◽  
Jian Wei Ji ◽  
Xiao Wei Han ◽  
Zhong Hu Yuan

In this paper, an approach based on wavelet packet analysis is proposed to deal with the problem that acoustic signal of moving vehicle is easily influenced by environmental noise in vehicle type classification. Wavelet packet analysis is applied to extract local and detail feature information of acoustic signal in the time-frequency domain. Firstly, raw acoustic signal is decomposed into different frequency bands by wavelet packet analysis, and then decomposition coefficients are reconstructed. The energy of every frequency band component is used to form the feature vector. Finally, vehicle type classification is implemented by RBF neural network on the basis of these feature vectors. Experimental results show that the proposed method is feasible and effective.


2012 ◽  
Vol 591-593 ◽  
pp. 2491-2494
Author(s):  
Jing Lei Zhou ◽  
Ying Li

Compared with common psychoacoustic model, this article uses wavelet packet decomposition to decompose a signal. This method improves the situation of insufficient time-frequency resolution which the uniform spectrum analysis causes. In addition, frequency division by wavelet packet decomposition is much closer to human’s critical band than the way common psychoacoustic model getting, it is more suitable to human’s hearing characteristics. So we can use wavelet packet decomposition replace FFT in MPEG, and get accurate psychoacoustic model.


2011 ◽  
Vol 2-3 ◽  
pp. 717-721 ◽  
Author(s):  
Xiao Xuan Qi ◽  
Mei Ling Wang ◽  
Li Jing Lin ◽  
Jian Wei Ji ◽  
Qing Kai Han

In light of the complex and non-stationary characteristics of misalignment vibration signal, this paper proposed a novel method to analyze in time-frequency domain under different working conditions. Firstly, decompose raw misalignment signal into different frequency bands by wavelet packet (WP) and reconstruct it in accordance with the band energy to remove noises. Secondly, employ empirical mode decomposition (EMD) to the reconstructed signal to obtain a certain number of stationary intrinsic mode functions (IMF). Finally, apply further spectrum analysis on the interested IMFs. In this way, weak signal is caught and dominant frequency is picked up for the diagnosis of misalignment fault. Experimental results show that the proposed method is able to detect misalignment fault characteristic frequency effectively.


Author(s):  
Fadi Al-Badour ◽  
Lahouari Cheded ◽  
M. Sunar

This paper introduces an efficient and powerful approach to fault detection in rotating machinery using time-frequency analysis based on the wavelet transform of the monitored shaft vibration signal. Wavelet techniques are one of the latest powerful tools in analyzing the transient information for condition monitoring and fault detection using vibration signature. The proposed technique combines both the Continuous Wavelet and the Wavelet Packet Transforms. In particular, it exploits the use of the modulus of the local maxima lines in the wavelet domain, to detect impulsive mechanical faults through shaft vibration such as impact blade-to-stator rubbing in turbo machinery. The proposed new wavelet-based signal processing method was able to detect the singularity in the measured shaft vibration, which was generated by blade rubbing. The singularity detection achieved by the new method was very well supported by its counterpart based on the direct blade vibration measurements. Our proposed technique was favorably compared with both the time wave and the traditional Fourier Transform techniques. In fact, both the analysis and the extensive simulation work show the superiority of the combined approach (Wavelet Packet Transform and Maxima Lines) over the traditional Fourier-based method, in reliably diagnosing impulsive mechanical faults.


2021 ◽  
Author(s):  
tingyu jiang ◽  
Sheng Hong ◽  
Hao Liu

Abstract In order to achieve accurate fault diagnosis of rolling bearing under random noise, a new fault diagnosis method based on wavelet packet-variational mode decomposition (WP-VMD) and kernel extreme learning machine (KELM) optimized by particle swarm optimization (PSO) is proposed in this paper. Firstly, the time-frequency domain feature vectors of the original rolling bearing fault signals are effectively obtained by preprocessing of WMD and decomposition and reconstruction of VMD. Then, the extracted two-dimensional feature vector is input into the KELM neural network for fault identification, and combined with PSO, KELM parameters were optimized. The experimental results show that the proposed method can effectively diagnose the rolling bearing under random noise, with the features of fast speed, stable performance and high accuracy. By comparison, this paper obtains better accuracy and real-time performance with fewer features, which provides a simple and efficient solution for fault diagnosis of rolling bearings.


Sign in / Sign up

Export Citation Format

Share Document