scholarly journals Time-Frequency Characteristics Analysis on Vibration Signals of a Three-Supported Rotor System with Misalignment

2011 ◽  
Vol 2-3 ◽  
pp. 717-721 ◽  
Author(s):  
Xiao Xuan Qi ◽  
Mei Ling Wang ◽  
Li Jing Lin ◽  
Jian Wei Ji ◽  
Qing Kai Han

In light of the complex and non-stationary characteristics of misalignment vibration signal, this paper proposed a novel method to analyze in time-frequency domain under different working conditions. Firstly, decompose raw misalignment signal into different frequency bands by wavelet packet (WP) and reconstruct it in accordance with the band energy to remove noises. Secondly, employ empirical mode decomposition (EMD) to the reconstructed signal to obtain a certain number of stationary intrinsic mode functions (IMF). Finally, apply further spectrum analysis on the interested IMFs. In this way, weak signal is caught and dominant frequency is picked up for the diagnosis of misalignment fault. Experimental results show that the proposed method is able to detect misalignment fault characteristic frequency effectively.

2020 ◽  
Vol 10 (15) ◽  
pp. 5078
Author(s):  
Wenxiao Guo ◽  
Ruiqin Li ◽  
Yanfei Kou ◽  
Jianwei Zhang

The feature extraction of composite fault of gearbox in mining machinery has always been a difficulty in the field of fault diagnosis. Especially in strong background noise, the frequency of each fault feature is different, so an adaptive time-frequency analysis method is urgently needed to extract different types of faults. Considering that the signal after complementary ensemble empirical mode decomposition (CEEMD) contains a lot of pseudo components, which further leads to misdiagnosis. The article proposes a new method for actively removing noise components. Firstly, the best scale factor of multi-scale sample entropy (MSE) is determined by signals with different signal to noise ratios (SNRs); secondly, the minimum value of a large number of random noise MSE is extracted and used as the threshold of CEEMD; then, the effective Intrinsic mode functions(IMFs) component is reconstructed, and the reconstructed signal is CEEMD decomposed again; finally, after multiple iterations, the MSE values of the component signal that are less than the threshold are obtained, and the iteration is terminated. The proposed method is applied to the composite fault simulation signal and mining machinery vibration signal, and the composite fault feature is accurately extracted.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 520
Author(s):  
Tao Liang ◽  
Hao Lu ◽  
Hexu Sun

The decomposition effect of variational mode decomposition (VMD) mainly depends on the choice of decomposition number K and penalty factor α. For the selection of two parameters, the empirical method and single objective optimization method are usually used, but the aforementioned methods often have limitations and cannot achieve the optimal effects. Therefore, a multi-objective multi-island genetic algorithm (MIGA) is proposed to optimize the parameters of VMD and apply it to feature extraction of bearing fault. First, the envelope entropy (Ee) can reflect the sparsity of the signal, and Renyi entropy (Re) can reflect the energy aggregation degree of the time-frequency distribution of the signal. Therefore, Ee and Re are selected as fitness functions, and the optimal solution of VMD parameters is obtained by the MIGA algorithm. Second, the improved VMD algorithm is used to decompose the bearing fault signal, and then two intrinsic mode functions (IMF) with the most fault information are selected by improved kurtosis and Holder coefficient for reconstruction. Finally, the envelope spectrum of the reconstructed signal is analyzed. The analysis of comparative experiments shows that the feature extraction method can extract bearing fault features more accurately, and the fault diagnosis model based on this method has higher accuracy.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Hui Li ◽  
Haiqi Zheng ◽  
Liwei Tang

Gear fault detection based on Empirical Mode Decomposition (EMD) and Teager Kaiser Energy Operator (TKEO) technique is presented. This novel method is named as Teager-Huang transform (THT). EMD can adaptively decompose the vibration signal into a series of zero mean Intrinsic Mode Functions (IMFs). TKEO can track the instantaneous amplitude and instantaneous frequency of the Intrinsic Mode Functions at any instant. The experimental results provide effective evidence that Teager-Huang transform has better resolution than that of Hilbert-Huang transform. The Teager-Huang transform can effectively diagnose the fault of the gear, thus providing a viable processing tool for gearbox defect detection and diagnosis.


2021 ◽  
Vol 11 (7) ◽  
pp. 2974
Author(s):  
Ipshita Das ◽  
Mohammad Taufiqul Arif ◽  
Aman Maung Than Oo ◽  
Mahbube Subhani

In this study, vibration based non-destructive testing (NDT) technique is adopted for assessing the condition of in-service timber pole. Timber is a natural material, and hence the captured broadband signal (induced from impact using modal hammer) is greatly affected by the uncertainty on wood properties, structure, and environment. Therefore, advanced signal processing technique is essential in order to extract features associated with the health condition of timber poles. In this study, Hilbert–Huang Transform (HHT) and Wavelet Packet Transform (WPT) are implemented to conduct time-frequency analysis on the acquired signal related to three in-service poles and three unserviceable poles. Firstly, mother wavelet is selected for WPT using maximum energy to Shannon entropy ratio. Then, the raw signal is divided into different frequency bands using WPT, followed by reconstructing the signal using wavelet coefficients in the dominant frequency bands. The reconstructed signal is then further decomposed into mono-component signals by Empirical Mode Decomposition (EMD), known as Intrinsic Mode Function (IMF). Dominant IMFs are selected using correlation coefficient method and instantaneous frequencies of those dominant IMFs are generated using HHT. Finally, the anomalies in the instantaneous frequency plots are efficiently utilised to determine vital features related to pole condition. The results of the study showed that HHT with WPT as pre-processor has a great potential for the condition assessment of utility timber poles.


Author(s):  
Adriana Hera ◽  
Abhijeet Shinde ◽  
Zhikun Hou

The paper presents a comparative study of the effectiveness of three novel damage detection techniques namely Continuous Wavelet Transform (CWT), Empirical Mode Decomposition (EMD) and Wavelet Packet Sifting (WPS). The health condition of a mechanical or civil engineering structure can be assessed by monitoring a change in natural frequencies and mode shapes. CWT method can be used to identify the instantaneous values of these modal parameters by the wavelet ridges. Using the EMD method, intrinsic mode functions (IMF) can be sifted from a vibration signal, whereas a newly-developed WPS technique can decompose a signal into its dominant mono-frequency components. Instantaneous modal information can be extracted by incorporating the EMD and WPS with the Hilbert Transform. These techniques are illustrated for simulated vibration data from a three-degree-of-freedom system subjected to (i) sudden damage and (ii) progressive damage. The aspects related to the implementation algorithms, sensitivity to damage type and the robustness issues in case of noisy data are discussed. In case of progressive damage, all methods performed well. WPS technique performed better in case of sudden damage whereas CWT demonstrated robustness in case of noisy data.


2014 ◽  
Vol 635-637 ◽  
pp. 790-794
Author(s):  
Yu Kui Wang ◽  
Hong Ru Li ◽  
Peng Ye

A novel method which is based on ensemble empirical mode decomposition (EEMD) and symbolic time series analysis (STSA) was proposed in this paper. Firstly, the vibration signal of hydraulic pump was decomposed into a number of stationary intrinsic mode functions (IMFs). Secondly, the sensitive component was extracted. Finally, the relative entropy (RE) was extracted from the sensitive components and they were used as the indicator to distinguish the faults of hydraulic pump. The research results of actual testing vibration signal demonstrated the rationality and effectiveness of the proposed method in this paper.


2013 ◽  
Vol 333-335 ◽  
pp. 1708-1712 ◽  
Author(s):  
Chong Liu ◽  
Li Hua Zhang ◽  
Tong Qun Ren ◽  
Jun Sheng Liang ◽  
Da Zhi Wang ◽  
...  

A method based on OEMD (Orthogonal Empirical Mode Decomposition) and the theory of time-frequency entropy was applied to detect different rail fastener conditions. The original vertical vibration acceleration response of rail under different fastening conditions was obtained from outdoor experiment. The OEMD method was used to get orthogonal IMFs (Intrinsic Mode Functions) of the original vibration signal. The Hilbert time-frequency spectrum was then obtained based on the orthogonal IMFs and corresponding entropy was calculated and compared. The results show that the method is available to detect different rail fastener conditions.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3510 ◽  
Author(s):  
Zhijian Wang ◽  
Junyuan Wang ◽  
Wenhua Du

Variational Mode Decomposition (VMD) can decompose signals into multiple intrinsic mode functions (IMFs). In recent years, VMD has been widely used in fault diagnosis. However, it requires a preset number of decomposition layers K and is sensitive to background noise. Therefore, in order to determine K adaptively, Permutation Entroy Optimization (PEO) is proposed in this paper. This algorithm can adaptively determine the optimal number of decomposition layers K according to the characteristics of the signal to be decomposed. At the same time, in order to solve the sensitivity of VMD to noise, this paper proposes a Modified VMD (MVMD) based on the idea of Noise Aided Data Analysis (NADA). The algorithm first adds the positive and negative white noise to the original signal, and then uses the VMD to decompose it. After repeated cycles, the noise in the original signal will be offset to each other. Then each layer of IMF is integrated with each layer, and the signal is reconstructed according to the results of the integrated mean. MVMD is used for the final decomposition of the reconstructed signal. The algorithm is used to deal with the simulation signals and measured signals of gearbox with multiple fault characteristics. Compared with the decomposition results of EEMD and VMD, it shows that the algorithm can not only improve the signal to noise ratio (SNR) of the signal effectively, but can also extract the multiple fault features of the gear box in the strong noise environment. The effectiveness of this method is verified.


2021 ◽  
Author(s):  
Chun-Hsiang Tang ◽  
Christina W. Tsai

<p>Abstract</p><p>Most of the time series in nature are nonlinear and nonstationary affected by climate change particularly. It is inevitable that Taiwan has also experienced frequent drought events in recent years. However, drought events are natural disasters with no clear warnings and their influences are cumulative. The difficulty of detecting and analyzing the drought phenomenon remains. To deal with the above-mentioned problem, Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) is introduced to analyze the temperature and rainfall data from 1975~2018 in this study, which is a powerful method developed for the time-frequency analysis of nonlinear, nonstationary time series. This method can not only analyze the spatial locality and temporal locality of signals but also decompose the multiple-dimensional time series into several Intrinsic Mode Functions (IMFs). By the set of IMFs, the meaningful instantaneous frequency and the trend of the signals can be observed. Considering stochastic and deterministic influences, to enhance the accuracy this study also reconstruct IMFs into two components, stochastic and deterministic, by the coefficient of auto-correlation.</p><p>In this study, the influences of temperature and precipitation on the drought events will be discussed. Furthermore, to decrease the significant impact of drought events, this study also attempts to forecast the occurrences of drought events in the short-term via the Artificial Neural Network technique. And, based on the CMIP5 model, this study also investigates the trend and variability of drought events and warming in different climatic scenarios.</p><p> </p><p>Keywords: Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD), Intrinsic Mode Function(IMF), Drought</p>


Sign in / Sign up

Export Citation Format

Share Document