Wavelet Packet Analysis Based Feature Extraction of Vehicular Acoustic Signal

2011 ◽  
Vol 55-57 ◽  
pp. 1593-1598
Author(s):  
Xiao Xuan Qi ◽  
Jian Wei Ji ◽  
Xiao Wei Han ◽  
Zhong Hu Yuan

In this paper, an approach based on wavelet packet analysis is proposed to deal with the problem that acoustic signal of moving vehicle is easily influenced by environmental noise in vehicle type classification. Wavelet packet analysis is applied to extract local and detail feature information of acoustic signal in the time-frequency domain. Firstly, raw acoustic signal is decomposed into different frequency bands by wavelet packet analysis, and then decomposition coefficients are reconstructed. The energy of every frequency band component is used to form the feature vector. Finally, vehicle type classification is implemented by RBF neural network on the basis of these feature vectors. Experimental results show that the proposed method is feasible and effective.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 72528-72537 ◽  
Author(s):  
Hatim Derrouz ◽  
Abderrahim Elbouziady ◽  
Hamd Ait Abdelali ◽  
Rachid Oulad Haj Thami ◽  
Sanaa El Fkihi ◽  
...  

2018 ◽  
Vol 51 (5-6) ◽  
pp. 138-149 ◽  
Author(s):  
Hüseyin Göksu

Estimation of vehicle speed by analysis of drive-by noise is a known technique. The methods used in this kind of practice generally estimate the velocity of the vehicle with respect to the microphone(s), so they rely on the relative motion of the vehicle to the microphone(s). There are also other methods that do not rely on this technique. For example, recent research has shown that there is a statistical correlation between vehicle speed and drive-by noise emissions spectra. This does not rely on the relative motion of the vehicle with respect to the microphone(s) so it inspires us to consider the possibility of predicting velocity of the vehicle using an on-board microphone. This has the potential for the development of a new kind of speed sensor. For this purpose we record sound signal from a vehicle under speed variation using an on-board microphone. Sound emissions from a vehicle are very complex, which is from the engine, the exhaust, the air conditioner, other mechanical parts, tires, and air resistance. These emissions carry both stationary and non-stationary information. We propose to make the analysis by wavelet packet analysis, rather than traditional time or frequency domain methods. Wavelet packet analysis, by providing arbitrary time-frequency resolution, enables analyzing signals of stationary and non-stationary nature. It has better time representation than Fourier analysis and better high-frequency resolution than Wavelet analysis. Subsignals from the wavelet packet analysis are analyzed further by Norm Entropy, Log Energy Entropy, and Energy. These features are evaluated by feeding them into a multilayer perceptron. Norm entropy achieves the best prediction with 97.89% average accuracy with 1.11 km/h mean absolute error which corresponds to 2.11% relative error. Time sensitivity is ±0.453 s and is open to improvement by varying the window width. The results indicate that, with further tests at other speed ranges, with other vehicles and under dynamic conditions, this method can be extended to the design of a new kind of vehicle speed sensor.


2018 ◽  
Vol 51 (3-4) ◽  
pp. 104-112
Author(s):  
Hüseyin Göksu

Fluid, when running through pipes, makes a complex sound emission whose parameters change nonlinearly with respect to flow speed. Especially, in household pipe systems, there may be spraying effects and resonance effects which make the emission more complex. We present a novel approach for predicting flow speed based on wavelet packet analysis of sound emissions rather than traditional time and frequency domain methods. Wavelet packet analysis, by providing arbitrary time–frequency resolution, enables analyzing signals of stationary and non-stationary nature. It has better time representation than Fourier analysis and better high-frequency resolution than wavelet analysis. Wavelet packet analysis subimages are further analyzed to obtain feature vectors of norm entropy. These feature vectors are fed into a multilayer perceptron for prediction. Prediction accuracy of 98.62%, with 3.99E−04 L/s mean absolute error and its corresponding 1.85% relative error is achieved. Time sensitivity is ±0.453 s and is open to improvement by varying window width. The result indicates that the proposed method is a good candidate for flow measurement by acoustic analysis.


Author(s):  
QINGBO HE ◽  
RUXU DU

The acoustic signal of mechanical watch is a distinct multi-component signal. It contains many frequency components corresponding to specific escapement motion sources with a very wide frequency range. Therefore, it is challenging for signature analysis of mechanical watch by the acoustic signal. This paper studies the time-frequency signatures of the mechanical watch based on wavelet decomposition. Two methods are proposed to improve the frequency resolution of traditional wavelet techniques by combining other beneficial techniques in the sense of decomposing specific mono- or independent components. The empirical mode decomposition (EMD) is presented to advance the wavelet packet decomposition (WPD) to decompose the mono-component signals. And the blind source separation (BSS) makes the redundancy of continuous wavelet transform (CWT) further gain good frequency resolution in the independent meaning. The decomposed signals by the two methods reveal the insight of mechanical watch movement and can contribute much simpler and clearer time-frequency signatures. Experimental results indicated the effectiveness of the two methods and the value of the time-frequency signatures in analyzing and diagnosing mechanical watch movements.


Sign in / Sign up

Export Citation Format

Share Document