CONSTRUCTIVE ESTIMATION OF APPROXIMATION FOR TRIGONOMETRIC NEURAL NETWORKS
For the three-layer artificial neural networks with trigonometric weights coefficients, the upper bound and lower bound of approximating 2π-periodic pth-order Lebesgue integrable functions [Formula: see text] are obtained in this paper. Theorems we obtained provide explicit equational representations of these approximating networks, the specification for their numbers of hidden-layer units, the lower bound estimation of approximation, and the essential order of approximation. The obtained results not only characterize the intrinsic property of approximation of neural networks, but also uncover the implicit relationship between the precision (speed) and the number of hidden neurons of neural networks.