Robust and discriminative dictionary learning for face recognition

Author(s):  
Guojun Lin ◽  
Meng Yang ◽  
Linlin Shen ◽  
Mingzhong Yang ◽  
Mei Xie

For face recognition, conventional dictionary learning (DL) methods have some disadvantages. First, face images of the same person vary with facial expressions and pose, illumination and disguises, so it is hard to obtain a robust dictionary for face recognition. Second, they don’t cover important components (e.g., particularity and disturbance) completely, which limit their performance. In the paper, we propose a novel robust and discriminative DL (RDDL) model. The proposed model uses sample diversities of the same face image to learn a robust dictionary, which includes class-specific dictionary atoms and disturbance dictionary atoms. These atoms can well represent the data from different classes. Discriminative regularizations on the dictionary and the representation coefficients are used to exploit discriminative information, which improves effectively the classification capability of the dictionary. The proposed RDDL is extensively evaluated on benchmark face image databases, and it shows superior performance to many state-of-the-art dictionary learning methods for face recognition.

Author(s):  
Bing Cao ◽  
Nannan Wang ◽  
Xinbo Gao ◽  
Jie Li ◽  
Zhifeng Li

Heterogeneous face recognition (HFR) refers to matching face images acquired from different domains with wide applications in security scenarios. However, HFR is still a challenging problem due to the significant cross-domain discrepancy and the lacking of sufficient training data in different domains. This paper presents a deep neural network approach namely Multi-Margin based Decorrelation Learning (MMDL) to extract decorrelation representations in a hyperspherical space for cross-domain face images. The proposed framework can be divided into two components: heterogeneous representation network and decorrelation representation learning. First, we employ a large scale of accessible visual face images to train heterogeneous representation network. The decorrelation layer projects the output of the first component into decorrelation latent subspace and obtain decorrelation representation. In addition, we design a multi-margin loss (MML), which consists of tetradmargin loss (TML) and heterogeneous angular margin loss (HAML), to constrain the proposed framework. Experimental results on two challenging heterogeneous face databases show that our approach achieves superior performance on both verification and recognition tasks, comparing with state-of-the-art methods.


2021 ◽  
pp. 1-15
Author(s):  
Yongjie Chu ◽  
Touqeer Ahmad ◽  
Lindu Zhao

Low-resolution face recognition with one-shot is a prevalent problem encountered in law enforcement, where it generally requires to recognize the low-resolution face images captured by surveillance cameras with the only one high-resolution profile face image in the database. The problem is very tough because the available samples is quite few and the quality of unknown images is quite low. To effectively address this issue, this paper proposes Adapted Discriminative Coupled Mappings (AdaDCM) approach, which integrates domain adaptation and discriminative learning. To achieve good domain adaptation performance for small size dataset, a new domain adaptation technique called Bidirectional Locality Matching-based Domain Adaptation (BLM-DA) is first developed. Then the proposed AdaDCM is formulated by unifying BLM-DA and discriminative coupled mappings into a single framework. AdaDCM is extensively evaluated on FERET, LFW, and SCface databases, which includes LR face images obtained in constrained, unconstrained, and real-world environment. The promising results on these datasets demonstrate the effectiveness of AdaDCM in LR face recognition with one-shot.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Basma Abd El-Rahiem ◽  
Ahmed Sedik ◽  
Ghada M. El Banby ◽  
Hani M. Ibrahem ◽  
Mohamed Amin ◽  
...  

PurposeThe objective of this paper is to perform infrared (IR) face recognition efficiently with convolutional neural networks (CNNs). The proposed model in this paper has several advantages such as the automatic feature extraction using convolutional and pooling layers and the ability to distinguish between faces without visual details.Design/methodology/approachA model which comprises five convolutional layers in addition to five max-pooling layers is introduced for the recognition of IR faces.FindingsThe experimental results and analysis reveal high recognition rates of IR faces with the proposed model.Originality/valueA designed CNN model is presented for IR face recognition. Both the feature extraction and classification tasks are incorporated into this model. The problems of low contrast and absence of details in IR images are overcome with the proposed model. The recognition accuracy reaches 100% in experiments on the Terravic Facial IR Database (TFIRDB).


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tongxin Wei ◽  
Qingbao Li ◽  
Jinjin Liu ◽  
Ping Zhang ◽  
Zhifeng Chen

In the process of face recognition, face acquisition data is seriously distorted. Many face images collected are blurred or even missing. Faced with so many problems, the traditional image inpainting was based on structure, while the current popular image inpainting method is based on deep convolutional neural network and generative adversarial nets. In this paper, we propose a 3D face image inpainting method based on generative adversarial nets. We identify two parallels of the vector to locate the planer positions. Compared with the previous, the edge information of the missing image is detected, and the edge fuzzy inpainting can achieve better visual match effect. We make the face recognition performance dramatically boost.


2019 ◽  
Vol 95 ◽  
pp. 102573
Author(s):  
Heyou Chang ◽  
Fanlong Zhang ◽  
Guangwei Gao ◽  
Hao Zheng ◽  
Yang Chen

Author(s):  
Shan Xue ◽  
Hong Zhu

In video surveillance, the captured face images are usually suffered from low-resolution (LR), besides, not all the probe images have mates in the gallery under the premise that only a single frontal high-resolution (HR) face image per subject. To address this problem, a novel face recognition framework called recursive label propagation based on statistical classification (ReLPBSC) has been proposed in this paper. Firstly, we employ VGG to extract robust discriminative feature vectors to represent each face. Then we select the corresponding LR face in the probe for each HR gallery face by similarity. Based on the picked HR–LR pairs, ReLPBSC is implemented for recognition. The main contributions of the proposed approach are as follows: (i) Inspired by substantial achievements of deep learning methods, VGG is adopted to achieve discriminative representation for LR faces to avoid the super-resolution steps; (ii) the accepted and rejected threshold parameters, which are not fixed in face recognition, can be achieved with ReLPBSC adaptively; (iii) the unreliable subjects never enrolled in the gallery can be rejected automatically with designed methods. Experimental results in [Formula: see text] pixels resolution show that the proposed method can achieve 86.64% recall rate while keeping 100% precision.


2022 ◽  
Author(s):  
Nishchal J

<p>Recent research has established the possibility of deducing soft-biometric attributes such as age, gender and race from an individual’s face image with high accuracy. Many techniques have been proposed to ensure user privacy, such as visible distortions to the images, manipulation of the original image with new face attributes, face swapping etc. Though these techniques achieve the goal of user privacy by fooling face recognition models, they don’t help the user when they want to upload original images without visible distortions or manipulation. The objective of this work is to implement techniques to ensure the privacy of user’s sensitive or personal data in face images by creating minimum pixel level distortions using white-box and black-box perturbation algorithms to fool AI models while maintaining the integrity of the image, so as to appear the same to a human eye.</p><div><br></div>


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhixue Liang

In the contactless delivery scenario, the self-pickup cabinet is an important terminal delivery device, and face recognition is one of the efficient ways to achieve contactless access express delivery. In order to effectively recognize face images under unrestricted environments, an unrestricted face recognition algorithm based on transfer learning is proposed in this study. First, the region extraction network of the faster RCNN algorithm is improved to improve the recognition speed of the algorithm. Then, the first transfer learning is applied between the large ImageNet dataset and the face image dataset under restricted conditions. The second transfer learning is applied between face image under restricted conditions and unrestricted face image datasets. Finally, the unrestricted face image is processed by the image enhancement algorithm to increase its similarity with the restricted face image, so that the second transfer learning can be carried out effectively. Experimental results show that the proposed algorithm has better recognition rate and recognition speed on the CASIA-WebFace dataset, FLW dataset, and MegaFace dataset.


Author(s):  
Jie Lin ◽  
Zechao Li ◽  
Jinhui Tang

With the explosive growth of images containing faces, scalable face image retrieval has attracted increasing attention. Due to the amazing effectiveness, deep hashing has become a popular hashing method recently. In this work, we propose a new Discriminative Deep Hashing (DDH) network to learn discriminative and compact hash codes for large-scale face image retrieval. The proposed network incorporates the end-to-end learning, the divide-and-encode module and the desired discrete code learning into a unified framework. Specifically, a network with a stack of convolution-pooling layers is proposed to extract multi-scale and robust features by merging the outputs of the third max pooling layer and the fourth convolutional layer. To reduce the redundancy among hash codes and the network parameters simultaneously, a divide-and-encode module to generate compact hash codes. Moreover, a loss function is introduced to minimize the prediction errors of the learned hash codes, which can lead to discriminative hash codes. Extensive experiments on two datasets demonstrate that the proposed method achieves superior performance compared with some state-of-the-art hashing methods.


Sign in / Sign up

Export Citation Format

Share Document