Multi-object tracking using deformable convolution networks with tracklets updating

Author(s):  
Yuanping Zhang ◽  
Yuanyan Tang ◽  
Bin Fang ◽  
Zhaowei Shang

Many multi-object tracking methods have been proposed to solve the computer vision problem which has been attracting significant attentions because of the significant appearance changes caused by deformation, abrupt motion, background clutter and occlusion. In this paper, hybrid deformable convolution neural networks with frame-pair input and deformable layers for multi-object tracking are presented. The object tracking method trained using two successive frames can predict the centers of searching windows as the locations of tracked targets to improve the accuracy and robustness of object tracking. Histogram of Oriented Gradient and CNN features are extracted as appearance features to measure similarities between objects. Kalman filter and Hungarian algorithm are used to create tracklets association which indicates the location and the trajectories of tracked targets. To solve the problem of object transformation, we construct a novel sampling strategy for off-line training with the idea of augmenting the special sampling locations in the convolution layers and pooling layers with additional offsets. Experiments on the popular challenging datasets show that the proposed tracking system performs on par with recently developed generic multi-object tracking methods, but effective for dense geometric transformation objects and with much less memory. In addition, the proposed tracking system can run in a speed of over 75 (24) fps with a GPU (CPU), much faster than most deep networks-based trackers.

2021 ◽  
Vol 13 (10) ◽  
pp. 1922
Author(s):  
Lulu Chen ◽  
Yongqiang Zhao ◽  
Jiaxin Yao ◽  
Jiaxin Chen ◽  
Ning Li ◽  
...  

This paper presents a correlation filter object tracker based on fast spatial-spectral features (FSSF) to realize robust, real-time object tracking in hyperspectral surveillance video. Traditional object tracking in surveillance video based only on appearance information often fails in the presence of background clutter, low resolution, and appearance changes. Hyperspectral imaging uses unique spectral properties as well as spatial information to improve tracking accuracy in such challenging environments. However, the high-dimensionality of hyperspectral images causes high computational costs and difficulties for discriminative feature extraction. In FSSF, the real-time spatial-spectral convolution (RSSC) kernel is updated in real time in the Fourier transform domain without offline training to quickly extract discriminative spatial-spectral features. The spatial-spectral features are integrated into correlation filters to complete the hyperspectral tracking. To validate the proposed scheme, we collected a hyperspectral surveillance video (HSSV) dataset consisting of 70 sequences in 25 bands. Extensive experiments confirm the advantages and the efficiency of the proposed FSSF for object tracking in hyperspectral video tracking in challenging conditions of background clutter, low resolution, and appearance changes.


2010 ◽  
Vol 36 ◽  
pp. 442-450
Author(s):  
Hiroyuki Ukida ◽  
Yasuyuki Yamanaka ◽  
Masahiro Inoue ◽  
Masayuki Kawanami

In this paper, we propose an object tracking system using an arm robot and two pan-tilt cameras. By combining these devices, we realize the high speed and wide range object tracking method. In order to trace an object, we must find the pattern of object in camera images. To perform fast object detection, we employ a method of the particle filter which describes object location probabilistically. In experiments, our tracking system can trace objects which move surround of the system, and we can confirm effectiveness of proposed method.


Author(s):  
Xuezhi Xiang ◽  
Wenkai Ren ◽  
Yujian Qiu ◽  
Kaixu Zhang ◽  
Ning Lv

Author(s):  
Xiuhua Hu ◽  
Yuan Chen ◽  
Yan Hui ◽  
Yingyu Liang ◽  
Guiping Li ◽  
...  

Aiming to tackle the problem of tracking drift easily caused by complex factors during the tracking process, this paper proposes an improved object tracking method under the framework of kernel correlation filter. To achieve discriminative information that is not sensitive to object appearance change, it combines dimensionality-reduced Histogram of Oriented Gradients features and Lab color features, which can be used to exploit the complementary characteristics robustly. Based on the idea of multi-resolution pyramid theory, a multi-scale model of the object is constructed, and the optimal scale for tracking the object is found according to the confidence maps’ response peaks of different sizes. For the case that tracking failure can easily occur when there exists inappropriate updating in the model, it detects occlusion based on whether the occlusion rate of the response peak corresponding to the best object state is less than a set threshold. At the same time, Kalman filter is used to record the motion feature information of the object before occlusion, and predict the state of the object disturbed by occlusion, which can achieve robust tracking of the object affected by occlusion influence. Experimental results show the effectiveness of the proposed method in handling various internal and external interferences under challenging environments.


2021 ◽  
Vol 44 ◽  
Author(s):  
Stefan Buijsman

Abstract Clarke and Beck argue that the ANS doesn't represent non-numerical magnitudes because of its second-order character. A sensory integration mechanism can explain this character as well, provided the dumbbell studies involve interference from systems that segment by objects such as the Object Tracking System. Although currently equal hypotheses, I point to several ways the two can be distinguished.


Sign in / Sign up

Export Citation Format

Share Document