INFERENCE OF LARGE-SCALE GENE REGULATORY NETWORKS USING REGRESSION-BASED NETWORK APPROACH

2009 ◽  
Vol 07 (04) ◽  
pp. 717-735 ◽  
Author(s):  
HASEONG KIM ◽  
JAE K. LEE ◽  
TAESUNG PARK

The gene regulatory network modeling plays a key role in search for relationships among genes. Many modeling approaches have been introduced to find the causal relationship between genes using time series microarray data. However, they have been suffering from high dimensionality, overfitting, and heavy computation time. Further, the selection of a best model among several possible competing models is not guaranteed that it is the best one. In this study, we propose a simple procedure for constructing large scale gene regulatory networks using a regression-based network approach. We determine the optimal out-degree of network structure by using the sum of squared coefficients which are obtained from all appropriate regression models. Through the simulated data, accuracy of estimation and robustness against noise are computed in order to compare with the vector autoregressive regression model. Our method shows high accuracy and robustness for inferring large-scale gene networks. Also it is applied to Caulobacter crecentus cell cycle data consisting of 1472 genes. It shows that many genes are regulated by two transcription factors, ctrA and gcrA, that are known for global regulators.

2017 ◽  
Vol 15 (02) ◽  
pp. 1650045 ◽  
Author(s):  
Olga V. Petrovskaya ◽  
Evgeny D. Petrovskiy ◽  
Inna N. Lavrik ◽  
Vladimir A. Ivanisenko

Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.


2016 ◽  
Author(s):  
Dianbo Liu ◽  
Luca Albergante ◽  
Timothy J Newman

AbstractUsing a combination of mathematical modelling, statistical simulation and large-scale data analysis we study the properties of linear regulatory chains (LRCs) within gene regulatory networks (GRNs). Our modelling indicates that downstream genes embedded within LRCs are highly insulated from the variation in expression of upstream genes, and thus LRCs act as attenuators. This observation implies a progressively weaker functionality of LRCs as their length increases. When analysing the preponderance of LRCs in the GRNs of E. coli K12 and several other organisms, we find that very long LRCs are essentially absent. In both E. coli and M. tuberculosis we find that four-gene LRCs are intimately linked to identical feedback loops that are involved in potentially chaotic stress response, indicating that the dynamics of these potentially destabilising motifs are strongly restrained under homeostatic conditions. The same relationship is observed in a human cancer cell line (K562), and we postulate that four-gene LRCs act as “universal attenuators”. These findings suggest a role for long LRCs in dampening variation in gene expression, thereby protecting cell identity, and in controlling dramatic shifts in cell-wide gene expression through inhibiting chaos-generating motifs.In briefWe present a general principle that linear regulatory chains exponentially attenuate the range of expression in gene regulatory networks. The discovery of a universal interplay between linear regulatory chains and genetic feedback loops in microorganisms and a human cancer cell line is analysed and discussed.HighlightsWithin gene networks, linear regulatory chains act as exponentially strong attenuators of upstream variationBecause of their exponential behaviour, linear regulatory chains beyond a few genes provide no additional functionality and are rarely observed in gene networks across a range of different organismsNovel interactions between four-gene linear regulatory chains and feedback loops were discovered in E. coli, M. tuberculosis and human cancer cells, suggesting a universal mechanism of control.


2015 ◽  
Vol 14s4 ◽  
pp. CIN.S19965 ◽  
Author(s):  
Simone Rubinacci ◽  
Alex Graudenzi ◽  
Giulio Caravagna ◽  
Giancarlo Mauri ◽  
James Osborne ◽  
...  

We introduce a Chaste plugin for the generation and the simulation of Gene Regulatory Networks (GRNs) in multiscale models of multicellular systems. Chaste is a widely used and versatile computational framework for the multiscale modeling and simulation of multicellular biological systems. The plugin, named CoGNaC (Chaste and Gene Networks for Cancer), allows the linking of the regulatory dynamics to key properties of the cell cycle and of the differentiation process in populations of cells, which can subsequently be modeled using different spatial modeling scenarios. The approach of CoGNaC focuses on the emergent dynamical behavior of gene networks, in terms of gene activation patterns characterizing the different cellular phenotypes of real cells and, especially, on the overall robustness to perturbations and biological noise. The integration of this approach within Chaste's modular simulation framework provides a powerful tool to model multicellular systems, possibly allowing for the formulation of novel hypotheses on gene regulation, cell differentiation, and, in particular, cancer emergence and development. In order to demonstrate the usefulness of CoGNaC over a range of modeling paradigms, two example applications are presented. The first of these concerns the characterization of the gene activation patterns of human T-helper cells. The second example is a multiscale simulation of a simplified intestinal crypt, in which, given certain conditions, tumor cells can emerge and colonize the tissue.


Cell Reports ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. 2290-2303 ◽  
Author(s):  
Delphine Potier ◽  
Kristofer Davie ◽  
Gert Hulselmans ◽  
Marina Naval Sanchez ◽  
Lotte Haagen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document