scholarly journals QUANTUM WALKS ON GENERAL GRAPHS

2006 ◽  
Vol 04 (05) ◽  
pp. 791-805 ◽  
Author(s):  
VIV KENDON

Quantum walks, both discrete (coined) and continuous time, on a general graph of N vertices with undirected edges are reviewed in some detail. The resource requirements for implementing a quantum walk as a program on a quantum computer are compared and found to be very similar for both discrete and continuous time walks. The role of the oracle, and how it changes if more prior information about the graph is available, is also discussed.

2022 ◽  
Vol 22 (1&2) ◽  
pp. 53-85
Author(s):  
Thomas G. Wong

The task of finding an entry in an unsorted list of $N$ elements famously takes $O(N)$ queries to an oracle for a classical computer and $O(\sqrt{N})$ queries for a quantum computer using Grover's algorithm. Reformulated as a spatial search problem, this corresponds to searching the complete graph, or all-to-all network, for a marked vertex by querying an oracle. In this tutorial, we derive how discrete- and continuous-time (classical) random walks and quantum walks solve this problem in a thorough and pedagogical manner, providing an accessible introduction to how random and quantum walks can be used to search spatial regions. Some of the results are already known, but many are new. For large $N$, the random walks converge to the same evolution, both taking $N \ln(1/\epsilon)$ time to reach a success probability of $1-\epsilon$. In contrast, the discrete-time quantum walk asymptotically takes $\pi\sqrt{N}/2\sqrt{2}$ timesteps to reach a success probability of $1/2$, while the continuous-time quantum walk takes $\pi\sqrt{N}/2$ time to reach a success probability of $1$.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 586 ◽  
Author(s):  
Xin Wang ◽  
Yi Zhang ◽  
Kai Lu ◽  
Xiaoping Wang ◽  
Kai Liu

The isomorphism problem involves judging whether two graphs are topologically the same and producing structure-preserving isomorphism mapping. It is widely used in various areas. Diverse algorithms have been proposed to solve this problem in polynomial time, with the help of quantum walks. Some of these algorithms, however, fail to find the isomorphism mapping. Moreover, most algorithms have very limited performance on regular graphs which are generally difficult to deal with due to their symmetry. We propose IsoMarking to discover an isomorphism mapping effectively, based on the quantum walk which is sensitive to topological structures. Firstly, IsoMarking marks vertices so that it can reduce the harmful influence of symmetry. Secondly, IsoMarking can ascertain whether the current candidate bijection is consistent with existing bijections and eventually obtains qualified mapping. Thirdly, our experiments on 1585 pairs of graphs demonstrate that our algorithm performs significantly better on both ordinary graphs and regular graphs.


Author(s):  
Mingyou Wu ◽  
Xi Li ◽  
Zhihao Liu ◽  
Hanwu Chen

The continuous-time quantum walk (CTQW) provides a new approach to problems in graph theory. In this paper, the correlation between the CTQW and cliques in graphs is studied, and an approximate algorithm for the maximum clique problem (MCP) based on the CTQW is given. Via both numerical and theoretical analyses, it is found that the maximum clique is related to the transmission characteristics of the CTQW on some special graphs. For general graphs, the correlation is difficult to describe analytically. Therefore, the transmission characteristics of the CTQW are applied as a vertex selection criterion to a classical MCP algorithm and it is compared with the original algorithm. Numerous simulation on general graphs shows that the new algorithm is more efficient. Furthermore, an approximate MCP algorithm based on the CTQW is introduced, which only requires a very small number of searches with a high approximation ratio.


Author(s):  
NORIO KONNO

A quantum central limit theorem for a continuous-time quantum walk on a homogeneous tree is derived from quantum probability theory. As a consequence, a new type of limit theorems for another continuous-time walk introduced by the walk is presented. The limit density is similar to that given by a continuous-time quantum walk on the one-dimensional lattice.


2004 ◽  
Vol 18 (04n05) ◽  
pp. 623-631 ◽  
Author(s):  
DIEGO DE FALCO ◽  
DARIO TAMASCELLI

Feynman's model of a quantum computer provides an example of a continuous-time quantum walk. Its clocking mechanism is an excitation of a basically linear chain of spins with occasional controlled jumps which allow for motion on a planar graph. The spreading of the wave packet poses limitations on the probability of ever completing the s elementary steps of a computation: an additional amount of storage space δ is needed in order to achieve an assigned completion probability. In this note we study the END instruction, viewed as a measurement of the position of the clocking excitation: a π-pulse indefinitely freezes the contents of the input/output register, with a probability depending only on the ratio δ/s.


Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Li-Hua Lu ◽  
Shan Zhu ◽  
You-Quan Li

AbstractWe investigate the dynamical properties of the two-boson quantum walk in systems with different degrees of coherence, and where the effect of the coherence on the two-boson quantum walk can be naturally introduced. A general analytical expression for the two-boson correlation function, for both pure states and mixed states, is given.We propose a possible two-photon quantum-walk scheme with a mixed initial state, and find that the twophoton correlation function and the average distance between two photons can be influenced by the initial photon distribution, the relative phase, or the degree of coherence. The propagation features of our numerical results can be explained by our analytical two-photon correlation function.


Author(s):  
Yan Wang

Stochastic diffusion is a general phenomenon observed in various national and engineering systems. It is typically modeled by either stochastic differential equation (SDE) or Fokker-Planck equation (FPE), which are equivalent approaches. Path integral is an accurate and effective method to solve FPEs. Yet, computational efficiency is the common challenge for path integral and other numerical methods, include time and space complexities. Previously, one-dimensional continuous-time quantum walk was used to simulate diffusion. By combining quantum diffusion and random diffusion, the new approach can accelerate the simulation with longer time steps than those in path integral. It was demonstrated that simulation can be dozens or even hundreds of times faster. In this paper, a new generic quantum operator is proposed to simulate drift-diffusion processes in high-dimensional space, which combines quantum walks on graphs with traditional path integral approaches. Probability amplitudes are computed efficiently by spectral analysis. The efficiency of the new method is demonstrated with stochastic resonance problems.


2006 ◽  
Vol 6 (3) ◽  
pp. 263-276 ◽  
Author(s):  
L. Fedichkin ◽  
D. Solenov ◽  
C. Tamon

We prove analytical results showing that decoherence can be useful for mixing time in a continuous-time quantum walk on finite cycles. This complements the numerical observations by Kendon and Tregenna (Physical Review A 67 (2003), 042315) of a similar phenomenon for discrete-time quantum walks. Our analytical treatment of continuous-time quantum walks includes a continuous monitoring of all vertices that induces the decoherence process. We identify the dynamics of the probability distribution and observe how mixing times undergo the transition from quantum to classical behavior as our decoherence parameter grows from zero to infinity. Our results show that, for small rates of decoherence, the mixing time improves linearly with decoherence, whereas for large rates of decoherence, the mixing time deteriorates linearly towards the classical limit. In the middle region of decoherence rates, our numerical data confirms the existence of a unique optimal rate for which the mixing time is minimized.


2008 ◽  
Vol 06 (04) ◽  
pp. 945-957 ◽  
Author(s):  
S. SALIMI

In the present paper, we study the continuous-time quantum walk on quotient graphs. On such graphs, there is a straightforward reduction of the problem to a subspace that can be considerably smaller than the original one. Along the lines of reductions, by using the idea of calculation of the probability amplitudes for continuous-time quantum walk in terms of the spectral distribution associated with the adjacency matrix of graphs [Jafarizadeh and Salimi (Ann. Phys.322 (2007))], we show that the continuous-time quantum walk on original graph Γ induces a continuous-time quantum walk on quotient graph ΓH. Finally, for example, we investigate the continuous-time quantum walk on some quotient Cayley graphs.


Sign in / Sign up

Export Citation Format

Share Document