Adiabatic demagnetization at absolute negative temperature: Generation of quantum correlations

2019 ◽  
Vol 17 (03) ◽  
pp. 1950023
Author(s):  
Gregory B. Furman ◽  
Shaul D. Goren ◽  
Victor M. Meerovich ◽  
Vladimir L. Sokolovsky

In this paper, we study behavior of the correlations, both quantum and classical, under adiabatic demagnetization process in systems of nuclear spins with dipole–dipole interactions in an external magnetic field and in the temperature range including positive and negative temperatures. For a two-spin system, analytical expressions for the quantum and classical correlations are obtained. It is revealed that the field dependences of the quantum and classical correlations at positive and negative temperatures are substantially different. This difference most clearly appears in the case of zero magnetic field: at negative temperature, the measures of quantum correlations tend to the maximum values with a temperature increase. At positive temperature, these quantities tend to zero at a decrease of magnetic field. It is also found that, for the nearest-neighboring spins in the same field, the values of concurrence and discord are larger at negative temperatures than at positive ones.

2018 ◽  
Vol 16 (01) ◽  
pp. 1850008 ◽  
Author(s):  
G. B. Furman ◽  
S. D. Goren ◽  
V. M. Meerovich ◽  
V. L. Sokolovsky

The Hamiltonian and the spin operators for a spin 3/2 are represented in the basis formed by the Kronecker productions of the [Formula: see text] Pauli matrices. This reformulation allows us to represent a spin 3/2 as a system of two coupled fictitious spins 1/2. Correlations between these fictitious spins are studied using well-developed methods. We investigate the temperature and field dependences of correlations, such as mutual information, classical correlations, entanglement, and geometric and quantum discords in the fictitious spin-1/2 system describing a nuclear spin 3/2 which is placed in magnetic and inhomogeneous electric fields. It is shown that the correlations between the fictitious spins demonstrate properties which differ from those of real two-spin systems. In contrast to real systems all the correlations between the fictitious spins do not vanish with increasing external magnetic field; at a high magnetic field the correlations tend to their limiting values. Classical correlations, quantum and geometric discords reveal a pronounced asymmetry relative to the measurements on subsystems (fictitious spins) even in a uniform magnetic field and at symmetrical EFG, [Formula: see text]. The correlations depend also on the distribution of external charges, on the parameter of symmetry [Formula: see text]. At [Formula: see text] quantum and geometric discords have finite values in a zero magnetic field. The proposed approach may be useful in analysis of properties of particles with larger angular momentum, can provide the way to discover new physical phenomenon of quantum correlations, and can be a useful tool for similar definitions of other physical quantities of complex systems.


2013 ◽  
Vol 11 (05) ◽  
pp. 1350050 ◽  
Author(s):  
GREGORY B. FURMAN ◽  
VICTOR M. MEEROVICH ◽  
VLADIMIR L. SOKOLOVSKY

A dipolar coupled spin system can achieve internal thermodynamic equilibrium states at negative absolute temperature. We study analytically and numerically the temperature dependence of the concurrence in a dipolar coupled spin-1/2 system in both nonzero and zero fields and show that, at negative temperatures, entangled states can exist even in zero magnetic field.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Wu-zhong Guo

Abstract In this paper we explore the correlations in the geometric states. Here the geometric state means the state in CFTs that can be effectively described by classical geometry in the bulk in the semi-classical limit G → 0. By using the upper bound of Holevo information we show the convex combination of geometric states cannot be a geometric state. To understand the duality between thermofield double state and eternal black hle, we construct several correlated states of two CFTs. In all the examples we show their correlations are too weak to produce the a connected spacetime. Then we review the measure named quantum discord and use it to characterize the classical and quantum correlations in quantum field theories. Finally, we discuss the correlations between two intervals A and B with distance d in the vacuum state of 2D CFTs with large central charge c. The feature is the phase transition of the mutual information I (ρAB). We analyse the quasi-product state of ρAB for large d. By using the Koashi-Winter relation of tripartite states the quantum and classical correlations between A and B can expressed as Holevo information, which provides a new understanding of the correlations as accessible information.


2022 ◽  
Vol 64 (2) ◽  
pp. 206
Author(s):  
А.В. Шумилин ◽  
Д.С. Смирнов

We consider the central spin model in the box approximation taking into account an external magnetic field and the anisotropy of the hyperfine interaction. From the exact Hamiltonian diagonalization we obtain analytical expressions for the nuclear spin dynamics in the limit of many nuclear spins. We predict the nuclear spin precession in zero magnetic field for the case of the anisotropic interaction between electron and nuclear spins. We calculate and describe the nuclear spin noise spectra in the thermodynamic equilibrium. The obtained results can be used for the analysis of the nuclear spin induced current fluctuations in organic semiconductors.


2012 ◽  
Vol 12 (9&10) ◽  
pp. 721-742
Author(s):  
Aharon Brodutch ◽  
Kavan Modi

Entanglement does not describe all quantum correlations and several authors have shown the need to go beyond entanglement when dealing with mixed states. Various different measures have sprung up in the literature, for a variety of reasons, to describe bipartite and multipartite quantum correlations; some are known under the collective name {\it quantum discord}. Yet, in the same sprit as the criteria for entanglement measures, there is no general mechanism that determines whether a measure of quantum and classical correlations is a proper measure of correlations. This is partially due to the fact that the answer is a bit muddy. In this article we attempt tackle this muddy topic by writing down several criteria for a ``good" measure of correlations. We breakup our list into \emph{necessary}, \emph{reasonable}, and \emph{debatable} conditions. We then proceed to prove several of these conditions for generalized measures of quantum correlations. However, not all conditions are met by all measures; we show this via several examples. The reasonable conditions are related to continuity of correlations, which has not been previously discussed. Continuity is an important quality if one wants to probe quantum correlations in the laboratory. We show that most types of quantum discord are continuous but none are continuous with respect to the measurement basis used for optimization.


Fractals ◽  
1997 ◽  
Vol 05 (01) ◽  
pp. 175-185 ◽  
Author(s):  
N. S. Ananikian ◽  
S. K. Dallakian ◽  
N. Sh. Izmailian ◽  
K. A. Oganessyan

The three-site antiferromagnetic Ising model on Husimi tree is investigated in an external magnetic field. The full bifurcation diagram, including chaos, of the magnetization is exhibited. With the "thermodynamic formalism", we investigate the antiferromagnetic Ising model in the case of fully developed chaos and describe the chaotic properties of this statistical mechanical system via the invariants characterizing a strange attractor. It is shown that this system displays in the chaotic region a phase transition at a positive "temperature" whereas in a class of maps close to x→ 4x(1-x), the phase transitions occur at negative "temperatures". The Frobenius-Perron recursion equation is numerically solved and the density of the invariant measure is obtained.


Nano Letters ◽  
2018 ◽  
Vol 18 (4) ◽  
pp. 2381-2386 ◽  
Author(s):  
Fabian Cadiz ◽  
Abdelhak Djeffal ◽  
Delphine Lagarde ◽  
Andrea Balocchi ◽  
Bingshan Tao ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafat Damseh ◽  
Yuankang Lu ◽  
Xuecong Lu ◽  
Cong Zhang ◽  
Paul J. Marchand ◽  
...  

AbstractRecent studies suggested that cerebrovascular micro-occlusions, i.e. microstokes, could lead to ischemic tissue infarctions and cognitive deficits. Due to their small size, identifying measurable biomarkers of these microvascular lesions remains a major challenge. This work aims to simulate potential MRI signatures combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). Driving our hypothesis are recent observations demonstrating a radial reorientation of microvasculature around the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially-oriented, and optical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n = 5) before and after inducing targeted photothrombosis, were analyzed. Computational vascular graphs combined with a 3D Monte-Carlo simulator were used to characterize the magnetic resonance (MR) response, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. We quantified the minimal intravoxel signal loss ratio when applying multiple gradient directions, at varying sequence parameters with and without ASL. With ASL, our results demonstrate a significant difference (p < 0.05) between the signal-ratios computed at baseline and 3 weeks after photothrombosis. The statistical power further increased (p < 0.005) using angiograms measured at week 4. Without ASL, no reliable signal change was found. We found that higher ratios, and accordingly improved significance, were achieved at lower magnetic field strengths (e.g., B0 = 3T) and shorter echo time TE (< 16 ms). Our simulations suggest that microstrokes might be characterized through ASL-DWI sequence, providing necessary insights for posterior experimental validations, and ultimately, future translational trials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chanhee Kim ◽  
Dilip Bhoi ◽  
Yeahan Sur ◽  
Byung-Gu Jeon ◽  
Dirk Wulferding ◽  
...  

AbstractIn order to understand the superconducting gap nature of a $$\hbox {2H-Pd}_{0.08} \hbox {TaSe}_2$$ 2H-Pd 0.08 TaSe 2 single crystal with $$T_{c} = 3.13 \text { K}$$ T c = 3.13 K , in-plane thermal conductivity $$\kappa $$ κ , in-plane London penetration depth $$\lambda _{\text {L}}$$ λ L , and the upper critical fields $$H_{c2}$$ H c 2 have been investigated. At zero magnetic field, it is found that no residual linear term $$\kappa _{0}/T$$ κ 0 / T exists and $$\lambda _{\text {L}}$$ λ L follows a power-law $$T^n$$ T n (T: temperature) with n = 2.66 at $$T \le \frac{1}{3}T_c$$ T ≤ 1 3 T c , supporting nodeless superconductivity. Moreover, the magnetic-field dependence of $$\kappa _{0}$$ κ 0 /T clearly shows a shoulder-like feature at a low field region. The temperature dependent $$H_{c2}$$ H c 2 curves for both in-plane and out-of-plane field directions exhibit clear upward curvatures near $$T_c$$ T c , consistent with the shape predicted by the two-band theory and the anisotropy ratio between the $$H_{c2}$$ H c 2 (T) curves exhibits strong temperature-dependence. All these results coherently suggest that $$\hbox {2H-Pd}_{0.08} \hbox {TaSe}_2$$ 2H-Pd 0.08 TaSe 2 is a nodeless, multiband superconductor.


Sign in / Sign up

Export Citation Format

Share Document