Quantum image encryption based on Lorenz hyper-chaotic system

2020 ◽  
Vol 18 (05) ◽  
pp. 2050022
Author(s):  
Ri-Gui Zhou ◽  
Ying-Bin Li

According to the higher security of higher-dimensional chaotic system, a new scheme of quantum image encryption and decryption based on Lorenz hyper-chaotic system is proposed. The encryption process is mainly divided into two parts: the location information scrambling process and the color information replacement process. In the location information scrambling process, the pseudo-random sequence obtained by the Lorenz hyper-chaotic system is first sorted to obtain the corresponding position index sequence, and then the rows and columns of the position information are scrambled by the index sequence. In the process of color replacement, the change of pixel value is firstly diffused to each pixel through chaotic sequence, and then the information of each pixel is confused, so as to realize the process of color information replacement. Experimental analysis shows that the encryption scheme in this paper has a good effect.

Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 867 ◽  
Author(s):  
Xingbin Liu ◽  
Di Xiao ◽  
Cong Liu

Quantum image encryption offers major advantages over its classical counterpart in terms of key space, computational complexity, and so on. A novel double quantum image encryption approach based on quantum Arnold transform (QAT) and qubit random rotation is proposed in this paper, in which QAT is used to scramble pixel positions and the gray information is changed by utilizing random qubit rotation. Actually, the independent random qubit rotation operates once, respectively, in spatial and frequency domains with the help of quantum Fourier transform (QFT). The encryption process accomplishes pixel confusion and diffusion, and finally the noise-like cipher image is obtained. Numerical simulation and theoretical analysis verify that the method is valid and it shows superior performance in security and computational complexity.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 343 ◽  
Author(s):  
Hui Liu ◽  
Bo Zhao ◽  
Linquan Huang

The paper proposes a lossless quantum image encryption scheme based on substitution tables (S-box) scrambling, mutation operation and general Arnold transform with keys. First, the key generator builds upon the foundation of SHA-256 hash with plain-image and a random sequence. Its output value is used to yield initial conditions and parameters of the proposed image encryption scheme. Second, the permutation and gray-level encryption architecture is built by discrete Arnold map and quantum chaotic map. Before the permutation of Arnold transform, the pixel value is modified by quantum chaos sequence. In order to get high scrambling and randomness, S-box and mutation operation are exploited in gray-level encryption stage. The combination of linear transformation and nonlinear transformation ensures the complexity of the proposed scheme and avoids harmful periodicity. The simulation shows the cipher-image has a fairly uniform histogram, low correlation coefficients closed to 0, high information entropy closed to 8. The proposed cryptosystem provides 2256 key space and performs fast computational efficiency (speed = 11.920875 Mbit/s). Theoretical analyses and experimental results prove that the proposed scheme has strong resistance to various existing attacks and high level of security.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1127
Author(s):  
Yue Zhao ◽  
Lingfeng Liu

A chaotic system refers to a deterministic system with seemingly random irregular motion, and its behavior is uncertain, unrepeatable, and unpredictable. In recent years, researchers have proposed various image encryption schemes based on a single low-dimensional or high-dimensional chaotic system, but many algorithms have problems such as low security. Therefore, designing a good chaotic system and encryption scheme is very important for encryption algorithms. This paper constructs a new double chaotic system based on tent mapping and logistic mapping. In order to verify the practicability and feasibility of the new chaotic system, a displacement image encryption algorithm based on the new chaotic system was subsequently proposed. This paper proposes a displacement image encryption algorithm based on the new chaotic system. The algorithm uses an improved new nonlinear feedback function to generate two random sequences, one of which is used to generate the index sequence, the other is used to generate the encryption matrix, and the index sequence is used to control the generation of the encryption matrix required for encryption. Then, the encryption matrix and the scrambling matrix are XORed to obtain the first encryption image. Finally, a bit-shift encryption method is adopted to prevent the harm caused by key leakage and to improve the security of the algorithm. Numerical experiments show that the key space of the algorithm is not only large, but also the key sensitivity is relatively high, and it has good resistance to various attacks. The analysis shows that this algorithm has certain competitive advantages compared with other encryption algorithms.


Sign in / Sign up

Export Citation Format

Share Document