TOWARDS THE RATIONALIZATION OF ANTHROPOMORPHIC ROBOT HAND DESIGN: EXTRACTING KNOWLEDGE FROM CONSTRAINED HUMAN MANUAL DEXTERITY TESTING

2013 ◽  
Vol 10 (02) ◽  
pp. 1350001 ◽  
Author(s):  
MICHAEL A. SALIBA ◽  
ALISTAIRE CHETCUTI ◽  
MATTHEW J. FARRUGIA

In this work, we take a new approach to the determination of the quantified contribution of various attributes of the human hand to its dexterity, with the aim of transposing this knowledge into supportive guidelines for the design of anthropomorphic robotic and prosthetic hands. We have carried out a number of standard dexterity tests on normal human subjects with various physical constraints applied to selected attributes of their hands, and have analyzed the results of the tests to extract knowledge on the quantified contribution of each attribute to overall manual dexterity. This knowledge is particularly significant in cases where it is important to optimize the trade-off between dexterity and complexity in the design of artificial hands. The data collection was made over 35 h of direct experimentation involving 40 volunteers during two separate runs, and the results represent empirically-derived upper limits on the achievable performance of humanoid robot hands having the specified deficiencies. We discuss the implications of our results in the context of a minimal anthropomorphic dexterous hand, which would incorporate the lowest possible number of degrees of freedom and other attributes while still retaining an acceptable level of dexterity. We end the paper with a suggestion on how the general approach presented herein could be extended to provide a platform for the quantification of the dexterity of anthropomorphic artificial hands.

2020 ◽  
Author(s):  
Gang Liu ◽  
Lu Wang ◽  
Jing Wang

Myoelectric prosthetic hands create the possibility for amputees to control their prosthetics like native hands. However, user acceptance of the extant myoelectric prostheses is low. Unnatural control, lack of sufficient feedback, and insufficient functionality are cited as primary reasons. Recently, although many multiple degrees-of-freedom (DOF) prosthetic hands and tactile-sensitive electronic skins have been developed, no non-invasive myoelectric interfaces can decode both forces and motions for five-fingers independently and simultaneously. This paper proposes a myoelectric interface based on energy allocation and fictitious forces hypothesis by mimicking the natural neuromuscular system. The energy-based interface uses a kind of continuous “energy mode” in the level of the entire hand. According to tasks itself, each energy mode can adaptively and simultaneously implement multiple hand motions and exerting continuous forces for a single finger. Also, a few learned energy modes could extend to the unlearned energy mode, highlighting the extensibility of this interface. We evaluate the proposed system through off-line analysis and operational experiments performed on the expression of the unlearned hand motions, the amount of finger energy, and real-time control. With active exploration, the participant was proficient at exerting just enough energy to five fingers on “fragile” or “heavy” objects independently, proportionally, and simultaneously in real-time. The main contribution of this paper is proposing the bionic energy-motion model of hand: decoding a few muscle-energy modes of the human hand (only ten modes in this paper) map massive tasks of bionic hand.


1997 ◽  
Vol 6 (1) ◽  
pp. 29-56 ◽  
Author(s):  
Lynette Jones

The sensory and motor capacities of the human hand are reviewed in the context of providing a set of performance characteristics against which prosthetic and dextrous robot hands can be evaluated. The sensors involved in processing tactile, thermal, and proprioceptive (force and movement) information are described, together with details on their spatial densities, sensitivity, and resolution. The wealth of data on the human hand's sensory capacities is not matched by an equivalent database on motor performance. Attempts at quantifying manual dexterity have met with formidable technological difficulties due to the conditions under which many highly trained manual skills are performed. Limitations in technology have affected not only the quantifying of human manual performance but also the development of prosthetic and robotic hands. Most prosthetic hands in use at present are simple grasping devices, and imparting a “natural” sense of touch to these hands remains a challenge. Several dextrous robot hands exist as research tools and even though some of these systems can outperform their human counterparts in the motor domain, they are still very limited as sensory processing systems. It is in this latter area that information from studies of human grasping and processing of object information may make the greatest contribution.


2012 ◽  
Vol 187 ◽  
pp. 293-297
Author(s):  
Pramod Kuma Parida ◽  
Bibhuti Bhusan Biswal ◽  
Dhirendra Nath Thatoi

There has been a continuous effort by researchers to develop multi-fingered robot hands for variety of applications. Some of these hands are meant for industrial applications while thers are used for orthopedic rehabilitation of humans. However the degree of success to develop an anthropomorphic robot hand in close resemblence with a typical human hand has not been satisfactory. In the present work an attempt has been made to design a robot hand having five fingers with 25 degrees of freedom by closly following the anatomy of human hand.The kinematic analysis of the hand offers confirmative results for effective graspingand manipulating objects.


2011 ◽  
Vol 338 ◽  
pp. 557-565 ◽  
Author(s):  
Wen Zhen Yang ◽  
Hua Zhang ◽  
Shi Guang Yu ◽  
Wen Hua Chen

Degrees of freedom (DOFs) and workspace are important factors to evaluate the flexibility of the dexterous hand. This paper develops an original dexterous hand, which has 20 active DOFs and adjustable thumb. Imitating the human hand bone structure, we design a full driven multi-fingered anthropomorphic robot hand (YWZ dexterous hand). For the thumb of YWZ dexterous hand, we innovatively design a metacarpal phalange mechanical structure to adjust thumb’s assembly position and radial orientation relative the palm. We construct coordinate systems to deduce the finger kinematic equations and analyze the finger workspace. A physical prototype of YWZ dexterous hand was manufactured to test its kinematic characteristics and workspace. Experimental results validate the YWZ dexterous hand has large workspace, excellent operating flexibility.


Author(s):  
Pei-Hsin Kuo ◽  
Jerod Hayes ◽  
Ashish D. Deshpande

Our long term goal is to develop a new generation of robotic-prosthetic hands that will incorporate key anatomical features of the human hand, especially, the passive dynamics defined by the joint stifftness and damping properties. This paper presents a design of a mechanism that can measure the passive moment of the human hand joint. We designed a motor-driven system, integrating a noninvasive and infrared motion capture system, that can control and record the angle, angular velocity and passive forces of the metacarpophalangeal (MCP) joint in the index finger. A total of 19 subjects participated in the experiments. We conducted two experiments to estimate the total passive moments of the MCP joint from the human subjects. The results showed that the novel design of the mechanism collected the precise passive moments and kinematic data, thus allowing us to develop a comprehensive understanding of the passive properties of the human hand joints.


2008 ◽  
Vol 20 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Kazuyuki Nagata ◽  
◽  
Fuminori Saito ◽  
Takashi Suehiro ◽  

Analysis of human hand grasping operation provides information for developing robot hand grasping algorithms based on human knowledge and experience. Hand grasping analysis involves finger movement and contact force acting on the fingertips. We present a master hand put on a human hand to measure fingertip movement and contact force acting on the human fingertips. The master hand consists of serial links, six-axis force/torque sensors installed on the fingertips, a base, a glove, and an inclination sensor. We developed the master hand to clarify human grasping strategy. We collect data by having a subject act under the physical constraints as those of the robot hand. Obtained information is used to develop grasping algorithms for robot hands. Starting with a discussion of the concept behind master hand development, we detail the mechanism of the master hand and demonstrate its features.


1963 ◽  
Vol 10 (02) ◽  
pp. 400-405 ◽  
Author(s):  
B. A Amundson ◽  
L. O Pilgeram

SummaryEnovid (5 mg norethynodrel and 0.075 mg ethynylestradiol-3-methyl ether) therapy in young normal human subjects causes an increase in plasma fibrinogen of 32.4% (P >C 0.001). Consideration of this effect together with other effects of Enovid on the activity of specific blood coagulatory factors suggests that the steroids are exerting their effect at a specific site of the blood coagulation and/or fibrinolytic system. The broad spectrum of changes which are induced by the steroids may be attributed to a combination of a chain reaction and feed-back control.


1979 ◽  
Vol 42 (02) ◽  
pp. 694-704 ◽  
Author(s):  
F Rendu ◽  
A T Nurden ◽  
M Lebret ◽  
J P Caen

SummaryWe have used the mepacrine-labelling procedure to measure the dense body (serotonin storage organelle) content of the platelets of 2 hereditary disorders where abnormalities in dense body number were suspected. The platelets were incubated with mepacrine and examined by fluorescence microscopy. A mean number of 5.4 ± 0.8 (SD) dense bodies per platelet was calculated from the data obtained using platelets isolated from 40 normal human subjects. In contrast the platelets of 2 patients with the Bernard-Soulier syndrome contained an average of 14 and 17 labelled granules. This increase was associated with a much greater capacity of the platelets to accumulate 14C-5-HT. The opposite result was obtained using the platelets from 2 patients with the Hermansky-Pudlak syndrome which contained few granules labelled by mepacrine and took up less 14C-5-HT than normal human platelets. Centrifugation of the patients’ platelets on discontinuous sucrose gradients showed that the platelets of the 2 Bemard-Soulier patients were much denser than normal whereas a high proportion of low density platelets was observed in the Hermansky-Pudlak syndrome. These results further define the platelet abnormalities in the two syndromes and suggest that dense body number may be one of the factors governing platelet density.


1973 ◽  
Vol 74 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Yoshikatsu Nakai ◽  
Hiroo Imura ◽  
Teruya Yoshimi ◽  
Shigeru Matsukura

ABSTRACT In order to determine if an adrenergic mechanism is involved in the secretion of corticotrophin (ACTH), the effect of adrenergic-blocking or -stimulating agent on plasma ACTH, cortisol and glucose levels was studied in normal human subjects. The intravenous infusion of methoxamine, an alpha adrenergic-stimulating agent, caused a rise in plasma ACTH and cortisol. This increase in plasma ACTH and cortisol was significantly inhibited by the simultaneous administration of phentolamine, an alpha adrenergic-blocking agent, in combination with methoxamine. The intravenous infusion of propranolol, a beta adrenergic-blocking agent, caused no significant change in plasma ACTH and cortisol, although it enhanced the plasma ACTH response to insulin-induced hypoglycaemia. On the other hand, alpha adrenergicblockade by intravenous infusion of phentolamine significantly suppressed the plasma ACTH response to insulin-induced hypoglycaemia. These studies suggest a stimulatory effect of alpha receptors and a possible inhibitory effect of beta receptors on ACTH secretion in man.


1996 ◽  
Vol 351 (1346) ◽  
pp. 1455-1462 ◽  

The lateral frontal cortex is involved in various aspects of executive processing within short- and long-term memory. It is argued that the different parts of the lateral frontal cortex make distinct contributions to memory that differ in terms of the level of executive processing that is carried out in interaction with posterior cortical systems. According to this hypothesis, the mid-dorsolateral frontal cortex (areas 46 and 9) is a specialized system for the monitoring and manipulation of information within working memory, whereas the mid-ventrolateral frontal cortex (areas 47/12 and 45) is involved in the active retrieval of information from the posterior cortical association areas. Data are presented which support this two-level hypothesis that posits two distinct levels of interaction of the lateral frontal cortex with posterior cortical association areas. Functional activation studies with normal human subjects have demonstrated specific activity within the mid-dorsolateral region of the frontal cortex during the performance of tasks requiring monitoring of self-generated and externally generated sequences of responses. In the monkey, lesions restricted to this region of the frontal cortex yield a severe impairment in performance of the above tasks, this impairment appearing against a background of normal performance on several basic mnemonic tasks. By contrast, a more severe impairment follows damage to the mid-ventrolateral frontal region and functional activation studies have demonstrated specific changes in activity in this region in relation to the active retrieval of information from memory.


Sign in / Sign up

Export Citation Format

Share Document