ADRENERGIC CONTROL MECHANISM FOR ACTH SECRETION IN MAN

1973 ◽  
Vol 74 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Yoshikatsu Nakai ◽  
Hiroo Imura ◽  
Teruya Yoshimi ◽  
Shigeru Matsukura

ABSTRACT In order to determine if an adrenergic mechanism is involved in the secretion of corticotrophin (ACTH), the effect of adrenergic-blocking or -stimulating agent on plasma ACTH, cortisol and glucose levels was studied in normal human subjects. The intravenous infusion of methoxamine, an alpha adrenergic-stimulating agent, caused a rise in plasma ACTH and cortisol. This increase in plasma ACTH and cortisol was significantly inhibited by the simultaneous administration of phentolamine, an alpha adrenergic-blocking agent, in combination with methoxamine. The intravenous infusion of propranolol, a beta adrenergic-blocking agent, caused no significant change in plasma ACTH and cortisol, although it enhanced the plasma ACTH response to insulin-induced hypoglycaemia. On the other hand, alpha adrenergicblockade by intravenous infusion of phentolamine significantly suppressed the plasma ACTH response to insulin-induced hypoglycaemia. These studies suggest a stimulatory effect of alpha receptors and a possible inhibitory effect of beta receptors on ACTH secretion in man.

2001 ◽  
Vol 91 (6) ◽  
pp. 2511-2516 ◽  
Author(s):  
S. J. Gunst ◽  
X. Shen ◽  
R. Ramchandani ◽  
R. S. Tepper

The effect of deep inspiration (DI) on airway responsiveness differs in asthmatic and normal human subjects. The mechanism for the effects of DI on airway responsiveness in vivo has not been identified. To elucidate potential mechanisms, we compared the effects of DI imposed before or during induced bronchoconstriction on the airway response to methacholine (MCh) in rabbits. The changes in airway resistance in response to intravenous MCh were continuously monitored. DI depressed the maximum response to MCh when imposed before or during the MCh challenge; however, the inhibitory effect of DI was greater when imposed during bronchoconstriction. Because immature rabbits have greater airway reactivity than mature rabbits, we compared the effects of DI on their airway responses. No differences were observed. Our results suggest that the mechanisms by which DI inhibits airway responsiveness do not depend on prior activation of airway smooth muscle (ASM). These results are consistent with the possibility that reorganization of the contractile apparatus caused by stretch of ASM during DI contributes to depression of the airway response.


1999 ◽  
Vol 44 (4) ◽  
pp. 319-327 ◽  
Author(s):  
Kenji Maekawa ◽  
Takuo Kuboki ◽  
Takuya Miyawaki ◽  
Masahiko Shimada ◽  
Atsushi Yamashita ◽  
...  

1987 ◽  
Vol 245 (1) ◽  
pp. 205-209 ◽  
Author(s):  
S Zierz ◽  
A G Engel

The inhibition of carnitine palmitoyltransferase (CPT, EC 2.3.1.21) by malonyl-CoA, acetyl-CoA and free CoA was studied in sonicated skeletal-muscle homogenates from normal human subjects and from five patients with a mutant CPT [Zierz & Engel (1985) Eur. J. Biochem. 149, 207-214]. (1) Malonyl-CoA, acetyl-CoA and CoA were competitive inhibitors of CPT with palmitoyl-CoA. (2) Acetyl-CoA and CoA inhibited normal and mutant CPT to the same degree, whereas malonyl-CoA inhibited mutant CPT more than normal CPT. (3) Triton X-100 abolished the inhibition of normal CPT by malonyl-CoA, but not by acetyl-CoA or CoA. Triton X-100 by itself caused loss of activity of the mutant CPT. (4) In the concentration range 0.1-0.4 mM, the inhibitory effects of any two of the three inhibitors were synergistic. (5) The inhibitory constants (Ki) for acetyl-CoA and CoA were close to 45 microM. The Ki for malonyl-CoA was 200-fold lower, or 0.22 microM. Addition of 40 microM-acetyl-CoA or CoA resulted in a 3-fold increase in the Ki for acetyl-CoA. Addition of 20 microM-CoA resulted in a 3-fold increase in the Ki for acetyl-CoA. (6) The findings indicate that acetyl-CoA and CoA can inhibit CPT at the catalytic site or a nearby site which is different from that at which malonyl-CoA inhibits CPT. (7) The fact that small changes in the concentration of acetyl-CoA and CoA can antagonize the inhibitory effect of malonyl-CoA suggests that these compounds could modulate the inhibition of CPT by malonyl-CoA.


1999 ◽  
Vol 44 (6) ◽  
pp. 475-483 ◽  
Author(s):  
Kenji Maekawa ◽  
Takuo Kuboki ◽  
Takuya Miyawaki ◽  
Masahiko Shimada ◽  
Atsushi Yamashita ◽  
...  

1986 ◽  
Vol 64 (12) ◽  
pp. 1455-1462 ◽  
Author(s):  
M. Alkondon ◽  
A. Ray ◽  
P. Sen

Twenty years after its discovery, the β-adrenergic blocking agent propranolol continues to interest pharmacologists and clinicians. Its therapeutic profile has extended to areas beyond the purview of the cardiovascular system, and its ocular and central nervous system effects have been well documented. In addition, it still remains a very good pharmacological tool to map out the adrenergic β-receptors in the body, and stereoisomers of propranolol and other β-blockers serve as valuable agents to distinguish between the effects related to β-adrenoceptors and those which are not. The primary purpose of this review is to summarize the evidence indicating that β-adrenergic blocking agents lack stereoselectivity in some of their effects, including several of considerable therapeutic importance. Because many pharmacological actions of propranolol followed a nonsteroselective pattern, the involvement of β-adrenoceptors in them was questioned and this led to the search for alternate mechanisms to explain these effects. Studies with propranolol and some related drugs indicated the involvement of a cholinergic mechanism in their antiarrhythmic, ocular hypotensive and some central effects. Also, a presynaptic inhibitory effect at the skeletal neuromuscular junction has been suggested to explain the benefical effect of propranolol and other β-blockers in tremor. Biochemical studies with these drugs revealed their inhibitory action on the cholinesterase enzyme in blood and other tissues like myocardium and brain. It is thus hypothesized that modulation of cholinergic neurotransmission by propranolol could explain some of its nonstereoselective actions and open new vistas in propranolol pharmacodynamics.


Sign in / Sign up

Export Citation Format

Share Document