From a 3D Passive Biped Walker to a 3D Passivity-Based Controlled Robot

2018 ◽  
Vol 15 (04) ◽  
pp. 1850009 ◽  
Author(s):  
Borhan Beigzadeh ◽  
Mohammad Reza Sabaapour ◽  
Mohammad Reza Hairi Yazdi ◽  
Kaamran Raahemifar

Asymptotically stable control of biped robots, especially based on reproducing passive periodic motions, have become of interest nowadays. In this paper, firstly, a three-dimensional (3D) stable passive biped walker which is a compass gait one with flat feet, compliant ankles and particular arrangement of moments of inertia has been presented. Then, a passivity-based control of the related biped robot based on elaborating 3D form of potential energy shaping method has been applied. In other words, by adding minimal actuations to the aforementioned passive walker, its passive periodic gait that belongs to a particular slope has been reproduced on any arbitrary surface such as the level ground. Simulation results support the effectiveness of the proposed approach.

2013 ◽  
Vol 461 ◽  
pp. 597-607
Author(s):  
Zhen Ze Liu ◽  
De Jun Liu ◽  
Lei Zhang ◽  
Yan Tao Tian

The wearable assistive and rehabilitative leg is a complex mechanical device mounted with the underactuated joints based on the bionic mechanism. This device can ameliorate the movement function of the nerve and muscle system of the lower extremity. By applying the bionic control strategy and exerting force on the lower extremity of patients, the walking gait of normal human being can be simulated. The patients with leg deformity who need to be remedied can benefit from this method. The expense on medical treatment can be considerably reduced by this kind of device, which alleviates the burden on family and society economically. The walking stability controller is designed for researching the biped robots in 3D ( three-dimensional) space. By constructing the almost-cyclic Lagrange function, the biped robot dynamic system is decoupled into sagittal and lateral portions. Then the potential energy shaping and kinetic energy shaping controller is designed for the sagittal portion of under-actuated robot in 2D space , so that the stable walking gait and bionic characteristic gait can be obtained; the output zero dynamic controller is applied to control the lateral counterpart, which satisfies the dynamic decoupling conditions of the system. The simulation results show that the proposed method is effective.


2020 ◽  
Vol 62 (1) ◽  
pp. 55-59
Author(s):  
Krzysztof Mataczyński ◽  
Mateusz Pelc ◽  
Halina Romualda Zięba ◽  
Zuzana Hudakova

Acquired adult flatfoot is a three-dimensional deformation, which consists of hindfoot valgus, collapse of the longitudinal arch of the foot and adduction of the forefoot. The aim of the work is to present problems related to etiology, biomechanics, clinical diagnostics and treatment principles of acquired flatfoot. The most common cause in adults is the dysfunction of the tibialis posterior muscle, leading to the lack of blocking of the transverse tarsal joint during heel elevation. Loading the unblocked joints consequently leads to ligament failure. The clinical image is dominated by pain in the foot and tibiotarsal joint. The physical examination of the flat feet consists of: inspection, palpation, motion range assessment and dynamic force assessment. The comparable attention should be paid to the height of the foot arch, the occurrence of “too many toes” sign, evaluate the heel- rise test and correction of the flatfoot, exclude Achilles tendon contracture. The diagnosis also uses imaging tests. In elastic deformations with symptoms of posterior tibial tendonitis, non-steroidal anti-inflammatory drugs, short-term immobilization, orthotics stabilizing the medial arch of the foot are used. In rehabilitation, active exercises of the shin muscles and the feet, especially the eccentric exercises of the posterior tibial muscle, are intentional. The physiotherapy and balneotherapy treatments, in particular hydrotherapy, electrotherapy and laser therapy, are used as a support. In advanced lesions, surgical treatment may be necessary, including plastic surgery of soft tissues, tendons, as well as osteotomy procedures.


2021 ◽  
Vol 11 (5) ◽  
pp. 2342
Author(s):  
Long Li ◽  
Zhongqu Xie ◽  
Xiang Luo ◽  
Juanjuan Li

Gait pattern generation has an important influence on the walking quality of biped robots. In most gait pattern generation methods, it is usually assumed that the torso keeps vertical during walking. It is very intuitive and simple. However, it may not be the most efficient. In this paper, we propose a gait pattern with torso pitch motion (TPM) during walking. We also present a gait pattern with torso keeping vertical (TKV) to study the effects of TPM on energy efficiency of biped robots. We define the cyclic gait of a five-link biped robot with several gait parameters. The gait parameters are determined by optimization. The optimization criterion is chosen to minimize the energy consumption per unit distance of the biped robot. Under this criterion, the optimal gait performances of TPM and TKV are compared over different step lengths and different gait periods. It is observed that (1) TPM saves more than 12% energy on average compared with TKV, and the main factor of energy-saving in TPM is the reduction of energy consumption of the swing knee in the double support phase and (2) the overall trend of torso motion is leaning forward in double support phase and leaning backward in single support phase, and the amplitude of the torso pitch motion increases as gait period or step length increases.


2018 ◽  
Vol 40 (4) ◽  
pp. 407-424
Author(s):  
Tran Thien Huan ◽  
Ho Pham Huy Anh

This paper proposes a new way to optimize the biped walking gait design for biped robots that permits stable and robust stepping with pre-set foot lifting magnitude. The new meta-heuristic CFO-Central Force Optimization algorithm is initiatively applied to optimize the biped gait parameters as to ensure to keep biped robot walking robustly and steadily. The efficiency of the proposed method is compared with the GA-Genetic Algorithm, PSO-Particle Swarm Optimization and Modified Differential Evolution algorithm (MDE). The simulated and experimental results carried on the prototype small-sized humanoid robot demonstrate that the novel meta-heuristic CFO algorithm offers an efficient and stable walking gait for biped robots with respect to a pre-set of foot-lift height value.


2021 ◽  
Vol 11 (18) ◽  
pp. 8599
Author(s):  
Liang Yang ◽  
Guanyu Lai ◽  
Yong Chen ◽  
Zhihui Guo

In this paper, we develop a new online walking controller for biped robots, which integrates a neural-network estimator and an incremental learning mechanism to improve the control performance in dynamic environment. With the aid of an iteration algorithm for updating, some newly incoming data can be used straightforwardly to update into the original well-trained model, in order to avoid a time-consuming retraining procedure. On the other hand, how to maintain the zero-moment-point stability and counteract the effect of yaw moment simultaneously is also a key technical problem to be addressed. To this end, an interval type-2 fuzzy weight identifier is newly developed, which assigns weight for each walking sample to deal with the imbalanced distribution problem of training data. The effectiveness of the proposed control scheme has been verified through a full-dynamics simulation and a practical robot experiment.


2019 ◽  
Vol 27 (3) ◽  
pp. 249-267
Author(s):  
JA Vazquez-Santacruz ◽  
J Torres-Figueroa ◽  
R de J Portillo-Velez

In this article, a formal mechatronic design of a biped robot is addressed. It is considered a model-based system engineering methodology since the continuous updating of information, from analysis and evolution of conceptual designs, demands a large volume of data. The definition of a biped robot comes from the need of a system to perform human-like walking as the problem to be solved. A specific robot configuration results from the analysis of conceptual solutions throughout SysML as the language for modeling the synergistic and automatic integration among engineering disciplines. The general design process is developed according to the well-known V-model for mechatronic systems design; however, a three-dimensional focus is proposed in order to address a variety of domains and their interaction along the design process. The detailed study of the solution is evaluated in order to optimize the joint torques and limbs shape from an anthropometric robot to achieve effective human-like motion. Although the mechatronic design is done for the overall biped robot system, this work is particularly focused on mechanical features as the most representative subsystem that incorporates genetic algorithm optimization based on a numerical Newton–Euler model merged with topology optimization tools to define final geometry of limbs with stiffness maximization.


Author(s):  
M. R. Sabaapour ◽  
M. R. Hairi Yazdi ◽  
B. Beigzadeh

The ability to move along curved paths is an essential feature for biped walkers to move around obstacles. This study is aimed at extending passive walking concept for curved walking and turning to generate more natural and effective motion. Hence three-dimensional (3D) motion of a rimless spoked-wheel, as the simplest walking model, about a general vertical fixed coordinate system has been derived. Then, two kinds of a stable passive turning, i.e. limited and circular continuous have been considered and discussed. The first kind is actually transferring from a 2D periodic motion to another, and can be implemented on a straight slope surface. While, it was shown that the second kind is just related to novel 3D periodic motions and can be recognized on a special surface profile namely “helical slope” introduced here. The latter are interpreted as 3D fixed points of a Poincare return map again. So, their stability was evaluated numerically by a Jacobian analysis and demonstrated through several simulations. Results show asymptotical stability of such motions and their considerable basin of attraction with respect to initial states. In addition, the characteristic of passive turning is shown to be strictly connected with the value of the initial perturbed condition, for instance, to the initial inclination of the wheel. It is then surprising to note that the stability of a 3D passive periodic motion (turning) is higher than 2D one (straight walking) which is actually a special case just with an infinite radius of turn.


Sign in / Sign up

Export Citation Format

Share Document