Dynamic Analysis and Control of Multi-Body Manufacturing Systems Based on Newton–Euler Formulation

2015 ◽  
Vol 12 (02) ◽  
pp. 1550007 ◽  
Author(s):  
Yunn-Lin Hwang ◽  
Van-Thuan Truong

This paper presents the numerical dynamic analysis and control of multi-body manufacturing systems based on Newton–Euler formulation. The models of systems built with dynamical parameters are executed. The research uses Newton–Euler formulation application in mechanics calculations, where relations between contiguous bodies through joints as well as their constrained equations are considered. The kinematics and dynamics are both analyzed and acquired by practical applications. Numerical tools help to determine all dynamic characteristics of multi-body manufacturing systems such as displacements, velocities, accelerations and reaction forces of bodies and joints. Using the acquisition, the dynamic approach of multi-body manufacturing systems is developed then whole fundamentals for controller tuning are obtained. It leads to an effective solution for mechanical manufacturing system investigation. Numerical examples are also presented as the illustrations in this paper. The numerical results imply that numerical equations based on Newton–Euler algorithm are valuable in multi-body manufacturing system. It is an effective approach for solving whole mechatronic manufacturing systems including structures, kinematics, dynamics and control.

2006 ◽  
Vol 505-507 ◽  
pp. 1015-1020
Author(s):  
Yunn Lin Hwang ◽  
Shen Jenn Huang

In this paper, a nonlinear recursive method for the dynamic and kinematic analysis of a closed-loop flexible manufacturing system is presented. The kinematic and dynamic models are developed using absolute reference, joint relative, and elastic coordinates as well as joint reaction forces. This recursive method leads to a system of loosely coupled equations of motion. In a closed-loop manufacturing system, cuts are made at selected secondary joints in order to form spanning tree structures. Compatibility conditions and reaction force relationships at the secondary joints are adjoined to the equations of open-loop manufacturing systems in order to form closed-loop kinematic and dynamic equations. Using the sparse matrix structure of these equations and the fact that the joint reaction forces associated with elastic degrees of freedom do not represent independent variables, a method for decoupling the joint and elastic accelerations is developed. Unlike existing recursive formulations, this method does not require inverse or factorization of large nonlinear matrices. The application of nonlinear recursive method in kinematic and dynamic analysis of closed-loop manufacturing systems is also discussed in this paper. The use of the numerical algorithm developed in this investigation is illustrated by a closed-loop flexible four-bar mechanism.


2015 ◽  
Vol 81 (1-2) ◽  
pp. 845-866 ◽  
Author(s):  
Firdaus E. Udwadia ◽  
Prasanth B. Koganti

2015 ◽  
Vol 764-765 ◽  
pp. 757-761 ◽  
Author(s):  
Yunn Lin Hwang ◽  
Jung Kuang Cheng ◽  
Van Thuan Truong

This paper presents simulation of multibody manufacturing systems with the support of numerical tools. The dynamic and cybernetic characteristics of driving system are discussed. Simple prototype models of robot arm and machine tool’s driving system are quickly established in Computer Aided Design (CAD) software inwhich the whole specification of material, inertia and so on are involved. The prototypes therefore are simulated in RecurDyn- a Computer Aided Engineering (CAE) software. The models are driven by controllers built in Matlab/Simulink via co-simulation. The results are suitable with theory and able to exploied for expansion of complexly effective factors. The research indicates that dynamic analysis and control could be done via numerical method instead of directly dynamic equation creation for multibody manufacturing systems.


2019 ◽  
Vol 22 (07n08) ◽  
pp. 1950021 ◽  
Author(s):  
AMING LI ◽  
YANG-YU LIU

Network science has experienced unprecedented rapid development in the past two decades. The network perspective has also been widely applied to explore various complex systems in great depth. In the first decade, fundamental characteristics of complex network structure, such as the small-worldness, scale-freeness, and modularity, of various complex networked systems were harvested from analyzing big empirical data. The associated dynamical processes on complex networks were also heavily studied. In the second decade, more attention was devoted to investigating the control of complex networked systems, ranging from fundamental theories to practical applications. Here we briefly review the recent progress regarding network dynamics and control, mainly concentrating on research questions proposed in the six papers we collected for this topical issue. This review closes with possible research directions along this line, and several important problems to be solved. We expect that, in the near future, network control will play an even bigger role in more fields, helping us understand and control many complex natural and engineered systems.


Author(s):  
Yuan Cheng ◽  
Qian Zhou ◽  
Ge-Xue Ren ◽  
Hui Zhang

This paper studies the six degree-of-freedom active isolation of flexible supporting structures using Gough-Stewart platform. The problem arises from a large radio telescope in which the astronomical equipment is mounted on a platform to be stabilized, while the base platform of the mechanism itself is carried by a cable car moving along flexible cables. In this paper, the stabilization problem is equivalent to a dynamics and control problem of multi-body system. A control law of the prediction of the base platform and PD feedback is proposed for the six actuators of the Gough-Stewart platform. Based on numerical results, a model experimental setup has been built up. The control effects are measured with LTD 500 Laser Tracker.


2015 ◽  
Vol 13 ◽  
pp. 43-52 ◽  
Author(s):  
Thanapat Wanichanon ◽  
Hancheol Cho ◽  
Firdaus E. Udwadia

2017 ◽  
Vol 14 (4) ◽  
pp. 172988141771982 ◽  
Author(s):  
Deira Sosa-Méndez ◽  
Esther Lugo-González ◽  
Manuel Arias-Montiel ◽  
Rafael A García-García

The mechanical structure known as Stewart–Gough platform is the most representative parallel robot with a wide variety of applications in many areas. Despite the intensive study on the kinematics, dynamics, and control of the Stewart–Gough platform, many details about these topics are still a challenging problem. In this work, the use of automatic dynamic analysis of multibody systems software for the kinematic and dynamic analysis of the Stewart–Gough platform is proposed. Moreover, a co-simulation automatic dynamic analysis of multibody systems (ADAMS)-MATLAB is developed for motion control of the Stewart–Gough platform end-effector. This computational approach allows the numerical solution for the kinematics, dynamics, and motion control of the Stewart–Gough platform and a considerable reduction on the analytical and programming effort. The obtained results in the three topics (kinematics, dynamics, and control) are validated by comparing them with analytical results reported in the literature. This kind of computational approach allows for the creation of virtual prototypes and saves time and resources in the development of Stewart–Gough platform-based robots applications.


2017 ◽  
Vol 64 (1) ◽  
pp. 5-21
Author(s):  
Bruce P. Minaker ◽  
Zheng Yao

Abstract The paper describes the design and multibody dynamic analysis of a mechanically interconnected suspension, as applied to a small off-road vehicle. Interconnected suspensions use some sort of connection between the axles of a vehicle in order improve ride quality or vehicle handling. In principle, the connection may be hydraulic, pneumatic, or mechanical, but for installation in a typical passenger car, a mechanical connection would likely be impractical due to weight and complexity. In this paper, the vehicle in question is the University of Windsor SAE Baja off-road competition vehicle, and novel mechanical design is proposed. A multibody dynamic analysis is performed on the proposed design using the EoM open source multibody software developed by the University of Windsor Vehicle Dynamics and Control research group in order to assess any potential performance improvements.


Sign in / Sign up

Export Citation Format

Share Document