Structural Reliability Assessment Based on Subjective Uncertainty

Author(s):  
Ying Liu ◽  
Jianyin Zhao ◽  
Zhigang Qu ◽  
Lin Wang
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hebing Luan ◽  
Jiachen Wang ◽  
Guowei Ma ◽  
Ke Zhang

Roof cutting has long been a potential hazard factor in longwall panels in some diggings in China. Meanwhile, the key strata structural reliability, which provides an assessment on the stability of overlying roof strata, may be a significant reference for support design in underground coal mines. This paper aims to investigate a practical nonprobabilistic reliability assessment method on key strata. The mechanical tests and the hollow inclusion triaxial strain tests were conducted to measure relevant mechanical parameters and in situ stress. Furthermore, against the typical failure features in Datong Diggings, China, a shear failure mechanical model of key strata is proposed. Then, an allowable-safety-factor based nonprobabilistic stability probability assessment method is given. The sensitivity of geometrical dimensions and uncertainty levels of friction angle and cohesion are further studied. It is found that thickness and span of key strata have more dominative effect on key strata’s stability compared with the other factor and the increase of uncertainty levels results in decrease of stability probability.


1994 ◽  
Vol 11 (2) ◽  
pp. 81-110 ◽  
Author(s):  
KWAN-LING LAI Research Assistant ◽  
BILAL M. AYYUB Member, ASCE

2016 ◽  
Vol 9 (2) ◽  
pp. 297-305 ◽  
Author(s):  
E. Mesquita ◽  
P. Antunes ◽  
A. A. Henriques ◽  
A. Arêde ◽  
P. S. André ◽  
...  

ABSTRACT Optical systems are recognized to be an important tool for structural health monitoring, especially for real time safety assessment, due to simplified system configuration and low cost when compared to regular systems, namely electrical systems. This work aims to present a case study on structural health monitoring focused on reliability assessment and applying data collected by a simplified optical sensing system. This way, an elevated reinforced concrete water reservoir was instrumented with a bi-axial optical accelerometer and monitored since January 2014. Taking into account acceleration data, the natural frequencies and relative displacements were estimated. The reliability analysis was performed based on generalized extreme values distribution (GEV) and the results were employed to build a forecast of the reliability of the water elevated reservoir for the next 100 years. The results showed that the optical system combined with GEV analysis, implemented in this experimental work, can provide adequate data for structural reliability assessment.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Rami Mansour ◽  
Mårten Olsson

Reliability assessment is an important procedure in engineering design in which the probability of failure or equivalently the probability of survival is computed based on appropriate design criteria and model behavior. In this paper, a new approximate and efficient reliability assessment method is proposed: the conditional probability method (CPM). Focus is set on computational efficiency and the proposed method is applied to classical load-strength structural reliability problems. The core of the approach is in the computation of the probability of failure starting from the conditional probability of failure given the load. The number of function evaluations to compute the probability of failure is a priori known to be 3n + 2 in CPM, where n is the number of stochastic design variables excluding the strength. The necessary number of function evaluations for the reliability assessment, which may correspond to expensive computations, is therefore substantially lower in CPM than in the existing structural reliability methods such as the widely used first-order reliability method (FORM).


Sign in / Sign up

Export Citation Format

Share Document