scholarly journals A Practical Nonprobabilistic Reliability Assessment Method on Key Strata Shear Failure in Longwall Mining

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hebing Luan ◽  
Jiachen Wang ◽  
Guowei Ma ◽  
Ke Zhang

Roof cutting has long been a potential hazard factor in longwall panels in some diggings in China. Meanwhile, the key strata structural reliability, which provides an assessment on the stability of overlying roof strata, may be a significant reference for support design in underground coal mines. This paper aims to investigate a practical nonprobabilistic reliability assessment method on key strata. The mechanical tests and the hollow inclusion triaxial strain tests were conducted to measure relevant mechanical parameters and in situ stress. Furthermore, against the typical failure features in Datong Diggings, China, a shear failure mechanical model of key strata is proposed. Then, an allowable-safety-factor based nonprobabilistic stability probability assessment method is given. The sensitivity of geometrical dimensions and uncertainty levels of friction angle and cohesion are further studied. It is found that thickness and span of key strata have more dominative effect on key strata’s stability compared with the other factor and the increase of uncertainty levels results in decrease of stability probability.

2014 ◽  
Vol 51 (5) ◽  
pp. 520-539 ◽  
Author(s):  
Shili Qiu ◽  
Xiating Feng ◽  
Chuanqing Zhang ◽  
Tianbing Xiang

For rock support in burst-prone ground, the wall-rock velocity adjacent to the surface of underground openings is a vital support design parameter, and depends on the seismic source mechanism inducing rockburst damage. In this study, to estimate the wall-rock velocity evoked only by rock slab buckling (an important rockburst source mechanism), a comprehensive velocity assessment method is proposed, using an excellent slab column buckling model with a small eccentricity, which relies on a novel compressive or tensile buckling failure criterion of rock slab. The true-triaxial loading–unloading tests and rockburst case analyses reveal that rock mass slabbing induced by high rock stress has major impacts on the evolution and formation of buckling rockburst in deep tunnels. Using a method based on the energy balance principle, the slabbing thickness of intact rock mass is also calculated by an analytical method, which indicates that the slabbing thickness parameter has a nonlinear relation to the following six parameters: uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), normal stress (σn), length of joint (L), friction angle ([Formula: see text]), and joint roughness coefficient (JRC). These proposed models and methods have been quite successfully applied to rockburst and slabbing cases occurring in deep tunnels. These applications show that slab flexure is an important source mechanism invoking high wall-rock velocities and leading to severe rockburst damages in the area surrounding deep tunnels.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Rami Mansour ◽  
Mårten Olsson

Reliability assessment is an important procedure in engineering design in which the probability of failure or equivalently the probability of survival is computed based on appropriate design criteria and model behavior. In this paper, a new approximate and efficient reliability assessment method is proposed: the conditional probability method (CPM). Focus is set on computational efficiency and the proposed method is applied to classical load-strength structural reliability problems. The core of the approach is in the computation of the probability of failure starting from the conditional probability of failure given the load. The number of function evaluations to compute the probability of failure is a priori known to be 3n + 2 in CPM, where n is the number of stochastic design variables excluding the strength. The necessary number of function evaluations for the reliability assessment, which may correspond to expensive computations, is therefore substantially lower in CPM than in the existing structural reliability methods such as the widely used first-order reliability method (FORM).


2020 ◽  
Vol 14 (1) ◽  
pp. 217-227
Author(s):  
Palash Dutta ◽  
Nisha Gohain

Aim: To devise an effective structural failure analysis approach under uncertainty. Background: In reliability evaluation, plenty of factors are uncertain, or sometimes, spontaneously represented via linguistic expressions, and as a consequence, the traditionalist appraisal methods cannot capably handle the ambiguity and vagueness that occurs in reliability assessment components. Subsequently, this leads to the problem of tremendous computationally multifaceted and scanty correctness. Objective: To overcome the limitations and to develop efficiency as well as accuracy in structural failure evaluation techniques, an attempt has been made to devise a novel structural reliability assessment method via credibility distribution. Methods: To get rid of the problems of massive computationally difficult and inadequate precision, an algorithm has been devised using credibility sampling. To exhibit the novelty, validity, and applicability of the present approach, some structural failure assessment problems are solved along with a comparison with the existing approach. Results: The proposed method was verified by four examples and applied in structural analysis. It was observed that the present approach is technically sound and efficient; it can overcome all the drawbacks of the existing approach. Moreover, the approach can be executed in any uncertain situation. Conclusion: After evaluation of failure assessment, it is experienced that the increase in the number of simulations leads to better precision. Furthermore, it is encountered that when hybridization problems i.e., representation of imprecise components in the problem of structural failure, are both fuzzy and probabilistic nature, then the failure assessment is attained to be maximum.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Shao-Fei Jiang ◽  
Da-Bao Fu ◽  
Si-Yao Wu

To reduce the runtime and ensure enough computation accuracy, this paper proposes a structural reliability assessment method by the use of sensitivity analysis (SA) and support vector machine (SVM). The sensitivity analysis is firstly applied to assess the effect of random variables on the values of performance function, while the small-influence variables are rejected as input vectors of SVM. Then, the trained SVM is used to classify the input vectors, which are produced by sampling the residual variables based on their distributions. Finally, the reliability assessment is implemented with the aid of reliability theory. A 10-bar planar truss is used to validate the feasibility and efficiency of the proposed method, and a performance comparison is made with other existing methods. The results show that the proposed method can largely save the runtime with less reduction of the accuracy; furthermore, the accuracy using the proposed method is the highest among the methods employed.


Author(s):  
Liangsheng Wang ◽  
Kaisheng Chen ◽  
Justin Bucknell

This paper presents a structural reliability assessment method to quantify the probability of platform failure for Trinidad offshore platforms subjected to hurricane events. Platforms are modeled as a series system composed of the topsides and jacket including foundation. The platform failure limit state function is defined in terms of environmental load and platform capacity. The platform capacity is evaluated by non-linear pushover analysis using USFOS program. A parametric relationship of wave load as a function of wave height is derived based on the offshore extreme environmental data. The first order reliability method (FORM) is used to estimate the annual failure probability. The relationship between the probability of platform failure and the reserve strength ratio (RSR) of platforms is investigated. The assessment results could be used to evaluate the level of risk associated with hurricane hazards and may be incorporated into the risk-based underwater inspection (RBUI) program as part of the structural integrity management (SIM) process.


2013 ◽  
Vol 748 ◽  
pp. 1256-1261
Author(s):  
Shou Hui He ◽  
Han Hua Zhu ◽  
Shi Dong Fan ◽  
Quan Wen

At the present time, the Dow Chemical Fire and Explosion Index (F&EI) is a kind of risk index evaluation method that is comprehensively used in evaluating potential hazard, area of exposure, expected losses in case of fire and explosion, etc. As the research object to oil depot storage tank area, this article ultimately confirms establishing appropriate pattern of process unit as well as reasonable safety precautions compensating method, in order to insure the reasonableness of evaluating result, by means of selecting process unit, confirming material factor and compensating safety precautions, using F&EI method. This can provide the basis for theoretical ground in aspect of oil depot development and safety production management.


1994 ◽  
Vol 11 (2) ◽  
pp. 81-110 ◽  
Author(s):  
KWAN-LING LAI Research Assistant ◽  
BILAL M. AYYUB Member, ASCE

Sign in / Sign up

Export Citation Format

Share Document